Whittaker Smoothing
Usage
smooth_whittaker(x, y, ...)
# S4 method for class 'numeric,numeric'
smooth_whittaker(x, y, lambda = 1600, d = 2, sparse = FALSE)
# S4 method for class 'ANY,missing'
smooth_whittaker(x, lambda = 1600, d = 2, sparse = FALSE)Arguments
- x, y
A
numericvector. Ifyis missing, an attempt is made to interpretxin a suitable way (seegrDevices::xy.coords()).- ...
Currently not used.
- lambda
An
integergiving the smoothing parameter. The largerlambdais, the smoother the curve.- d
An
integerspecifying the order of the penalty.- sparse
A
logicalscalar: should sparse matrices be used for computation? IfTRUE, Matrix is required.
Value
Returns a list with two components x and y.
References
Eilers, P. H. C. (2003). A Perfect Smoother. Analytical Chemistry, 75(14): 3631-36. doi:10.1021/ac034173t .
See also
Other smoothing methods:
smooth_likelihood(),
smooth_loess(),
smooth_rectangular(),
smooth_savitzky(),
smooth_triangular()
Examples
## Simulate data with some noise
x <- seq(-4, 4, length = 100)
y <- dnorm(x) + rnorm(100, mean = 0, sd = 0.01)
## Plot spectrum
plot(x, y, type = "l", xlab = "", ylab = "")
## Rectangular smoothing
unweighted <- smooth_rectangular(x, y, m = 3)
plot(unweighted, type = "l", xlab = "", ylab = "")
## Triangular smoothing
weighted <- smooth_triangular(x, y, m = 5)
plot(weighted, type = "l", xlab = "", ylab = "")
## Loess smoothing
loess <- smooth_loess(x, y, span = 0.75)
plot(loess, type = "l", xlab = "", ylab = "")
## Savitzky–Golay filter
savitzky <- smooth_savitzky(x, y, m = 21, p = 2)
plot(savitzky, type = "l", xlab = "", ylab = "")
## Whittaker smoothing
whittaker <- smooth_whittaker(x, y, lambda = 1600, d = 2)
plot(whittaker, type = "l", xlab = "", ylab = "")
