remove_zero()
remove rows/columns that contain zeros.replace_zero
replaces zeros.
Usage
remove_zero(x, ...)
replace_zero(x, ...)
# S4 method for ANY
remove_zero(x, margin = 1, all = FALSE)
# S4 method for matrix
replace_zero(x, value)
Arguments
- x
An object (should be a
matrix
or adata.frame
).- ...
Currently not used.
- margin
A vector giving the subscripts which the function will be applied over (
1
indicates rows,2
indicates columns).- all
A
logical
scalar. IfTRUE
, only the rows/columns whose values all meet the condition defined byf
are considered. IfFALSE
(the default), only rows/columns where at least one value validates the condition defined byf
are considered.- value
A possible replacement value.
Examples
## Create a count data matrix
X <- matrix(sample(1:10, 25, TRUE), nrow = 5, ncol = 5)
## Add NA
k <- sample(1:25, 3, FALSE)
X[k] <- NA
X
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 7 2 3 2 4
#> [2,] NA 8 8 5 9
#> [3,] 7 10 7 NA 3
#> [4,] 6 4 10 8 3
#> [5,] 8 5 NA 2 3
## Count missing values in rows
count(X, f = is.na, margin = 1)
#> [1] 0 1 1 0 1
## Count non-missing values in columns
count(X, f = is.na, margin = 2, negate = TRUE)
#> [1] 4 5 4 4 5
## Find row with NA
detect(X, f = is.na, margin = 1)
#> [1] FALSE TRUE TRUE FALSE TRUE
## Find column without any NA
detect(X, f = is.na, margin = 2, negate = TRUE, all = TRUE)
#> [1] FALSE TRUE FALSE FALSE TRUE
## Keep row without any NA
keep(X, f = is.na, margin = 1, negate = TRUE, all = TRUE)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 7 2 3 2 4
#> [2,] 6 4 10 8 3
## Keep row without any NA
keep(X, f = is.na, margin = 2, negate = TRUE, all = TRUE)
#> [,1] [,2]
#> [1,] 2 4
#> [2,] 8 9
#> [3,] 10 3
#> [4,] 4 3
#> [5,] 5 3
## Remove row with any NA
discard(X, f = is.na, margin = 1, all = FALSE)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 7 2 3 2 4
#> [2,] 6 4 10 8 3
## Remove column with any NA
discard(X, f = is.na, margin = 2, all = FALSE)
#> [,1] [,2]
#> [1,] 2 4
#> [2,] 8 9
#> [3,] 10 3
#> [4,] 4 3
#> [5,] 5 3
## Replace NA with zeros
replace_NA(X, value = 0)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 7 2 3 2 4
#> [2,] 0 8 8 5 9
#> [3,] 7 10 7 0 3
#> [4,] 6 4 10 8 3
#> [5,] 8 5 0 2 3