Confidence Interval for Binomial Proportions
Source:R/AllGenerics.R
, R/statistics.R
confidence_binomial.Rd
Computes a Wald interval for a proportion at a desired level of significance.
Usage
confidence_binomial(object, ...)
# S4 method for class 'numeric'
confidence_binomial(
object,
n,
level = 0.95,
method = "wald",
corrected = FALSE
)
Arguments
- object
A
numeric
vector giving the number of success.- ...
Currently not used.
- n
A length-one
numeric
vector giving the number of trials.- level
A length-one
numeric
vector giving the confidence level. Must be a single number between \(0\) and \(1\).- method
A
character
string specifying the method to be used. Any unambiguous substring can be used.- corrected
A
logical
scalar: should continuity correction be used? Only used ifmethod
is "wald
".
Value
A length-two numeric
vector giving the lower and upper confidence
limits.
See also
Other summary statistics:
confidence_mean()
,
confidence_multinomial()
,
interval_credible()
,
interval_hdr()
Examples
## Confidence interval for a mean
x <- seq(from = -4, to = 4, by = 0.01)
y <- dnorm(x)
confidence_mean(y, type = "student")
#> lower upper
#> 0.1151118 0.1345606
confidence_mean(y, type = "normal")
#> lower upper
#> 0.1151265 0.1345459
## Confidence interval for a propotion
confidence_binomial(118, n = 236)
#> lower upper
#> 0.4362086 0.5637914
x <- c(35, 74, 22, 69)
confidence_multinomial(x)
#> lower upper
#> [1,] 0.12234021 0.2276598
#> [2,] 0.30308797 0.4369120
#> [3,] 0.06663649 0.1533635
#> [4,] 0.27911853 0.4108815