Provides a summary of the results of a multivariate data analysis.
Usage
# S4 method for class 'MultivariateSummary'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
# S4 method for class 'CA'
summary(
object,
...,
axes = c(1, 2),
margin = 1,
active = TRUE,
sup = TRUE,
rank = NULL
)
# S4 method for class 'PCA'
summary(
object,
...,
axes = c(1, 2),
margin = 1,
active = TRUE,
sup = TRUE,
rank = NULL
)Arguments
- x
A
MultivariateSummaryobject.- row.names
A
charactervector giving the row names for the data frame, orNULL.- optional
A
logicalscalar: should the names of the variables in the data frame be checked? IfFALSEthen the names of the variables in the data frame are checked to ensure that they are syntactically valid variable names and are not duplicated.- ...
Currently not used.
- object
- axes
A length-two
numericvector giving the dimensions to be summarized.- margin
A length-one
numericvector giving the subscript which the data will be summarized:1indicates individuals/rows (the default),2indicates variables/columns.- active
A
logicalscalar: should the active observations be summarized?- sup
A
logicalscalar: should the supplementary observations be summarized?- rank
An
integervalue specifying the maximal number of components to be kept in the results. Deprecated, useaxesinstead.
Examples
## Data from Lebart et al. 2006, p. 170-172
data("colours")
## Compute correspondence analysis
X <- ca(colours)
## Rows summary
summary(X, margin = 1)
#> # Correspondence Analysis (CA)
#>
#> ## Eigenvalues
#>
#> | | eigenvalues | variance | cumulative |
#> | :- | ----------: | -------: | ---------: |
#> | F1 | 0.209 | 89.373 | 89.373 |
#> | F2 | 0.022 | 9.515 | 98.888 |
#> | F3 | 0.003 | 1.112 | 100 |
#>
#> ## Active rows
#>
#> | | inertia | F1_coord | F1_contrib | F1_cos2 | F2_coord | F2_contrib | F2_cos2 |
#> | :------- | ------: | -------: | ---------: | ------: | -------: | ---------: | ------: |
#> | marron | 250.487 | -0.492 | 43.116 | 0.967 | -0.088 | 13.042 | 0.031 |
#> | noisette | 83.321 | -0.213 | 3.401 | 0.542 | 0.167 | 19.804 | 0.336 |
#> | vert | 148.785 | 0.162 | 1.355 | 0.176 | 0.339 | 55.91 | 0.773 |
#> | bleu | 306.566 | 0.547 | 52.128 | 0.977 | -0.083 | 11.244 | 0.022 |
## Columns summary
summary(X, margin = 2)
#> # Correspondence Analysis (CA)
#>
#> ## Eigenvalues
#>
#> | | eigenvalues | variance | cumulative |
#> | :- | ----------: | -------: | ---------: |
#> | F1 | 0.209 | 89.373 | 89.373 |
#> | F2 | 0.022 | 9.515 | 98.888 |
#> | F3 | 0.003 | 1.112 | 100 |
#>
#> ## Active columns
#>
#> | | inertia | F1_coord | F1_contrib | F1_cos2 | F2_coord | F2_contrib | F2_cos2 |
#> | :------ | ------: | -------: | ---------: | ------: | -------: | ---------: | ------: |
#> | brun | 303.812 | -0.505 | 22.246 | 0.838 | -0.215 | 37.877 | 0.152 |
#> | chatain | 25.428 | -0.148 | 5.086 | 0.864 | 0.033 | 2.319 | 0.042 |
#> | roux | 125.862 | -0.13 | 0.964 | 0.133 | 0.32 | 55.131 | 0.812 |
#> | blond | 702.91 | 0.835 | 71.704 | 0.993 | -0.07 | 4.673 | 0.007 |
