Splits the data into subsets and computes compositional mean for each.
Usage
condense(x, ...)
# S4 method for class 'CompositionMatrix'
condense(x, by, ignore_na = FALSE, ignore_zero = TRUE, verbose = FALSE, ...)
# S4 method for class 'GroupedComposition'
condense(
x,
by = NULL,
ignore_na = FALSE,
ignore_zero = TRUE,
verbose = FALSE,
...
)Arguments
- x
A
CompositionMatrixobject.- ...
Currently not used.
- by
A
vectoror a list of grouping elements, each as long as the variables inx(seegroup()).- ignore_na
A
logicalscalar: should missing values be stripped before the computation proceeds?- ignore_zero
A
logicalscalar: should zeros be stripped before the computation proceeds?- verbose
A
logicalscalar: should R report extra information on progress?
Value
A CompositionMatrix object.
See also
Other statistics:
aggregate(),
covariance(),
dist,
mahalanobis(),
margin(),
mean(),
pip(),
quantile(),
scale(),
variance(),
variance_total(),
variation()
Examples
## Data from Aitchison 1986
data("slides")
## Coerce to a compositional matrix
coda <- as_composition(slides, groups = 2)
## Compositional mean by group
condense(coda)
#> <GroupedComposition: 5 x 7>
#> quartz microcline plagioclass biotite muscovite opaques
#> A 0.2591344 0.3553997 0.3335045 0.02654833 0.013683701 0.007173544
#> B 0.2703079 0.3526640 0.3239803 0.03482515 0.008977167 0.006667495
#> C 0.2772923 0.3535327 0.3149545 0.03107089 0.011128347 0.007732587
#> D 0.2757090 0.3548635 0.3138702 0.03298438 0.010338266 0.009093408
#> E 0.2794701 0.3474061 0.3231178 0.02962410 0.010892785 0.006494703
#> nonopaques
#> A 0.004555830
#> B 0.002578014
#> C 0.004288649
#> D 0.003141288
#> E 0.002994409
