1 |
#' @include AllGenerics.R AllClasses.R |
|
2 |
NULL |
|
3 | ||
4 |
# Shannon ====================================================================== |
|
5 |
variance_shannon <- function(x, base = exp(1), na.rm = FALSE, ...) { |
|
6 |
## Validation |
|
7 | 5x |
x <- x[x > 0] # Remove unobserved species |
8 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
9 | ! |
if (anyNA(x)) return(NA) |
10 | ||
11 | 5x |
N <- sum(x) |
12 | 5x |
S <- length(x) |
13 | 5x |
p <- x / N |
14 | ||
15 | 5x |
a <- sum(p * (log(p, base = base))^2) |
16 | 5x |
b <- sum(p * log(p, base = base))^2 |
17 | ||
18 | 5x |
var <- ((a - b) / N) + ((S - 1) / (2 * N^2)) |
19 | 5x |
var |
20 |
} |
|
21 | ||
22 |
#' @export |
|
23 |
#' @rdname test |
|
24 |
#' @aliases test_shannon,numeric,numeric-method |
|
25 |
setMethod( |
|
26 |
f = "test_shannon", |
|
27 |
signature = c(x = "numeric", y = "numeric"), |
|
28 |
definition = function(x, y, ...) { |
|
29 |
## Validation |
|
30 | 2x |
arkhe::assert_length(y, length(x)) |
31 | ||
32 |
## Calculate the number of individuals |
|
33 | 2x |
Nx <- sum(x, na.rm = TRUE) |
34 | 2x |
Ny <- sum(y, na.rm = TRUE) |
35 | ||
36 |
## Calculate Shannon diversity |
|
37 |
## See PAST documentation, p. 208 |
|
38 | 2x |
d <- (sum(x > 0) - 1) / (2 * sum(x)) |
39 | 2x |
Hx <- index_shannon(x, ...) |
40 | 2x |
Hy <- index_shannon(y, ...) |
41 | ||
42 |
## Calculate Shannon variance |
|
43 | 2x |
Vx <- variance_shannon(x, ...) |
44 | 2x |
Vy <- variance_shannon(y, ...) |
45 | ||
46 |
## t test statistic |
|
47 | 2x |
tt <- (Hx - Hy) / sqrt(Vx + Vy) |
48 | ||
49 |
## Degrees of freedom |
|
50 | 2x |
df <- (Vx + Vy)^2 / sum(c(Vx, Vy)^2 / c(Nx, Ny)) |
51 | ||
52 |
## p value |
|
53 | 2x |
p <- 2 * (1 - stats::pt(q = abs(tt), df = df)) |
54 | ||
55 | 2x |
list( |
56 | 2x |
statistic = tt, |
57 | 2x |
parameter = df, |
58 | 2x |
p.value = p |
59 |
) |
|
60 |
} |
|
61 |
) |
|
62 | ||
63 |
#' @export |
|
64 |
#' @describeIn test Produces two sided pairwise comparisons. |
|
65 |
#' @aliases test_shannon,matrix,missing-method |
|
66 |
setMethod( |
|
67 |
f = "test_shannon", |
|
68 |
signature = c(x = "matrix", y = "missing"), |
|
69 |
definition = function(x, adjust = "holm", ...) { |
|
70 |
## Get the names of the assemblages |
|
71 | 1x |
row_names <- rownames(x) |
72 | 1x |
if (length(row_names) != 0) { |
73 | 1x |
row_names <- factor(row_names, levels = unique(row_names)) |
74 |
} else { |
|
75 | ! |
row_names <- factor(seq_len(nrow(x))) |
76 |
} |
|
77 | ||
78 |
## Compute t test |
|
79 | 1x |
compare <- function(i, j) { |
80 | 1x |
test_shannon(x[i, ], x[j, ], ...)$p.value |
81 |
} |
|
82 | ||
83 | 1x |
result <- stats::pairwise.table( |
84 | 1x |
compare.levels = compare, |
85 | 1x |
level.names = row_names, |
86 | 1x |
p.adjust.method = adjust |
87 |
) |
|
88 | 1x |
result |
89 |
} |
|
90 |
) |
|
91 | ||
92 |
#' @export |
|
93 |
#' @describeIn test Produces two sided pairwise comparisons. |
|
94 |
#' @aliases test_shannon,data.frame,missing-method |
|
95 |
setMethod( |
|
96 |
f = "test_shannon", |
|
97 |
signature = c(x = "data.frame", y = "missing"), |
|
98 |
definition = function(x, adjust = "holm", ...) { |
|
99 | ! |
x <- data.matrix(x) |
100 | ! |
methods::callGeneric(x, adjust = adjust, ...) |
101 |
} |
|
102 |
) |
|
103 | ||
104 |
# Simpson ====================================================================== |
|
105 |
variance_simpson <- function(x, na.rm = FALSE, ...) { |
|
106 |
## Validation |
|
107 | 4x |
x <- x[x > 0] # Remove unobserved species |
108 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
109 | ! |
if (anyNA(x)) return(NA) |
110 | ||
111 | 4x |
N <- sum(x) |
112 | 4x |
S <- length(x) |
113 | 4x |
p <- x / N |
114 | ||
115 | 4x |
a <- 4 * N * (N - 1) * (N - 2) * sum(p^3) |
116 | 4x |
b <- 2 * N * (N - 1) * sum(p^2) |
117 | 4x |
c <- 2 * N * (N - 1) * (2 * N - 3) * sum(p^2)^2 |
118 | ||
119 | 4x |
var <- (a + b - c) / (N^2 * (N - 1)^2) |
120 | 4x |
var |
121 |
} |
|
122 | ||
123 |
#' @export |
|
124 |
#' @rdname test |
|
125 |
#' @aliases test_simpson,numeric,numeric-method |
|
126 |
setMethod( |
|
127 |
f = "test_simpson", |
|
128 |
signature = c(x = "numeric", y = "numeric"), |
|
129 |
definition = function(x, y, adjust = "holm", ...) { |
|
130 |
## Validation |
|
131 | 2x |
arkhe::assert_length(y, length(x)) |
132 | ||
133 |
## Calculate the number of individuals |
|
134 | 2x |
Nx <- sum(x, na.rm = TRUE) |
135 | 2x |
Ny <- sum(y, na.rm = TRUE) |
136 | ||
137 |
## Calculate Shannon diversity |
|
138 | 2x |
Hx <- index_simpson(x, ...) |
139 | 2x |
Hy <- index_simpson(y, ...) |
140 | ||
141 |
## Calculate Shannon variance |
|
142 | 2x |
Vx <- variance_simpson(x, ...) |
143 | 2x |
Vy <- variance_simpson(y, ...) |
144 | ||
145 |
## t test statistic |
|
146 | 2x |
tt <- (Hx - Hy) / sqrt(Vx + Vy) |
147 | ||
148 |
## Degrees of freedom |
|
149 | 2x |
df <- (Vx + Vy)^2 / sum(c(Vx, Vy)^2 / c(Nx, Ny)) |
150 | ||
151 |
## p value |
|
152 | 2x |
p <- 2 * (1 - stats::pt(q = abs(tt), df = df)) |
153 | ||
154 | 2x |
list( |
155 | 2x |
statistic = tt, |
156 | 2x |
parameter = df, |
157 | 2x |
p.value = p |
158 |
) |
|
159 |
} |
|
160 |
) |
|
161 | ||
162 |
#' @export |
|
163 |
#' @describeIn test Produces two sided pairwise comparisons. |
|
164 |
#' @aliases test_simpson,matrix,missing-method |
|
165 |
setMethod( |
|
166 |
f = "test_simpson", |
|
167 |
signature = c(x = "matrix", y = "missing"), |
|
168 |
definition = function(x, adjust = "holm", ...) { |
|
169 |
## Get the names of the assemblages |
|
170 | 1x |
row_names <- rownames(x) |
171 | 1x |
if (length(row_names) != 0) { |
172 | 1x |
row_names <- factor(row_names, levels = unique(row_names)) |
173 |
} else { |
|
174 | ! |
row_names <- factor(seq_len(nrow(x))) |
175 |
} |
|
176 | ||
177 |
## Compute t test |
|
178 | 1x |
compare <- function(i, j) { |
179 | 1x |
test_simpson(x[i, ], x[j, ])$p.value |
180 |
} |
|
181 | ||
182 | 1x |
result <- stats::pairwise.table( |
183 | 1x |
compare.levels = compare, |
184 | 1x |
level.names = row_names, |
185 | 1x |
p.adjust.method = adjust |
186 |
) |
|
187 | 1x |
result |
188 |
} |
|
189 |
) |
|
190 | ||
191 |
#' @export |
|
192 |
#' @describeIn test Produces two sided pairwise comparisons. |
|
193 |
#' @aliases test_simpson,data.frame,missing-method |
|
194 |
setMethod( |
|
195 |
f = "test_simpson", |
|
196 |
signature = c(x = "data.frame", y = "missing"), |
|
197 |
definition = function(x, adjust = "holm", ...) { |
|
198 | ! |
x <- data.matrix(x) |
199 | ! |
methods::callGeneric(x, adjust = adjust) |
200 |
} |
|
201 |
) |
1 |
# MATRIX PLOT |
|
2 | ||
3 |
# Plot ========================================================================= |
|
4 |
#' Matrix Plot |
|
5 |
#' |
|
6 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
7 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
8 |
#' individuals for each category, i.e. a contingency table). |
|
9 |
#' @param panel A [`function`] in the form `function(x, y, z, color, ...)` |
|
10 |
#' which gives the action to be carried out in each panel of the display. |
|
11 |
#' @param diag A [`logical`] scalar indicating whether the diagonal of the |
|
12 |
#' matrix should be plotted. Only used if `object` is a symmetric matrix. |
|
13 |
#' @param upper A [`logical`] scalar indicating whether the upper triangle of |
|
14 |
#' the matrix should be plotted. Only used if `object` is a symmetric matrix. |
|
15 |
#' @param lower A [`logical`] scalar indicating whether the lower triangle of |
|
16 |
#' the matrix should be plotted. Only used if `object` is a symmetric matrix. |
|
17 |
#' @param freq A [`logical`] scalar indicating whether conditional proportions |
|
18 |
#' given `margins` should be used (i.e. entries of `object`, divided by the |
|
19 |
#' appropriate marginal sums). |
|
20 |
#' @param margin An [`integer`] vector giving the margins to split by: |
|
21 |
#' `1` indicates individuals/rows (the default), `2` indicates |
|
22 |
#' variables/columns. Only used if `freq` is `TRUE`. |
|
23 |
#' @param scale A [`logical`] scalar indicating whether data should be rescaled |
|
24 |
#' to \eqn{[-1,1]}. Only used if `freq` if `FALSE`. |
|
25 |
#' @param drop_zero A [`logical`] scalar: should zeros be discarded? |
|
26 |
#' @param color A vector of colors or a [`function`] that when called with a |
|
27 |
#' single argument (an integer specifying the number of colors) returns a |
|
28 |
#' vector of colors. |
|
29 |
#' @param midpoint A [`numeric`] value specifying the data midpoint. |
|
30 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? It will |
|
31 |
#' omit labels where they would abut or overlap previously drawn labels. |
|
32 |
#' @param legend A [`logical`] scalar: should a legend be displayed? |
|
33 |
#' @param asp A length-one [`numeric`] vector, giving the aspect ratio |
|
34 |
#' \eqn{y/x}. |
|
35 |
#' @param ... Further arguments to be passed to `panel`. |
|
36 |
#' @keywords internal |
|
37 |
plot_matrix <- function(object, panel, diag = TRUE, upper = TRUE, lower = TRUE, |
|
38 |
freq = FALSE, margin = 1, scale = TRUE, drop_zero = TRUE, |
|
39 |
color = graphics::par("fg"), midpoint = NULL, |
|
40 |
axes = TRUE, legend = TRUE, asp = 1, ...) { |
|
41 |
## Validation |
|
42 | 21x |
if (is_incidence(object)) { |
43 | 1x |
object[] <- as.numeric(object) |
44 | 1x |
legend <- FALSE |
45 |
} |
|
46 | ||
47 |
## Prepare data |
|
48 | 21x |
n <- nrow(object) |
49 | 21x |
m <- ncol(object) |
50 | 21x |
seq_row <- rev(seq_len(n)) |
51 | 21x |
seq_col <- seq_len(m) |
52 | 21x |
lab_row <- rownames(object) %||% seq_row |
53 | 21x |
lab_col <- colnames(object) %||% seq_col |
54 | ||
55 | 21x |
data <- prepare(object, diag = diag, upper = upper, lower = lower, |
56 | 21x |
freq = freq, margin = margin, scale = scale, |
57 | 21x |
drop_zero = drop_zero, |
58 | 21x |
palette = color, midpoint = midpoint) |
59 | ||
60 |
## Graphical parameters |
|
61 | 21x |
cex.axis <- graphics::par("cex.axis") |
62 | 21x |
col.axis <- graphics::par("col.axis") |
63 | 21x |
font.axis <- graphics::par("font.axis") |
64 | ||
65 |
## Save and restore |
|
66 | 21x |
d <- inch2line("M", cex = cex.axis) |
67 | 21x |
old_par <- graphics::par("mar", "plt") |
68 | 21x |
on.exit(graphics::par(old_par)) |
69 | ||
70 | 21x |
mar_left <- inch2line(lab_row, cex = cex.axis) |
71 | 21x |
mar_top <- inch2line(lab_col, cex = cex.axis) |
72 | 21x |
mar_right <- if (legend) inch2line("999%", cex = cex.axis) else d |
73 | 21x |
graphics::par(mar = c(d, mar_left, mar_top, mar_right)) |
74 | ||
75 |
## Open new window |
|
76 | 21x |
grDevices::dev.hold() |
77 | 21x |
on.exit(grDevices::dev.flush(), add = TRUE) |
78 | 21x |
graphics::plot.new() |
79 | ||
80 |
## Squish plotting area |
|
81 | 21x |
pin <- graphics::par("pin") |
82 | 21x |
plt <- graphics::par("plt") |
83 | ||
84 |
## Add horizontal space for the legend (5%) |
|
85 | 21x |
legend_width <- if (legend) max(1, m / 20) else 0 |
86 | ||
87 | 6x |
if (isTRUE(asp)) asp <- 1 |
88 | 21x |
if (!isFALSE(asp) && !is.na(asp)) { |
89 | 15x |
aspect_ratio <- n / (m + legend_width) |
90 | 15x |
pin_y <- pin[1] * aspect_ratio * asp |
91 | ||
92 | 15x |
if (pin_y < pin[2]) { |
93 |
## Squish vertically |
|
94 | 11x |
graphics::par(pin = c(pin[1], pin_y)) |
95 | 11x |
graphics::par(plt = c(plt[1:2], graphics::par('plt')[3:4])) |
96 |
} else { |
|
97 |
## Squish horizontally |
|
98 | 4x |
pin_x <- pin[2] / aspect_ratio / asp |
99 | 4x |
graphics::par(pin = c(pin_x, pin[2])) |
100 | 4x |
graphics::par(plt = c(graphics::par('plt')[1:2], plt[3:4])) |
101 |
} |
|
102 |
} |
|
103 | ||
104 |
## Set plotting coordinates |
|
105 | 21x |
xlim <- c(0, m + legend_width) + 0.5 |
106 | 21x |
ylim <- c(0, n) + 0.5 |
107 | 21x |
graphics::plot.window(xlim = xlim, ylim = ylim, xaxs = "i", yaxs = "i", asp = asp) |
108 | ||
109 |
## Plot |
|
110 | 21x |
panel(x = data$x, y = data$y, z = data$scaled, color = data$color, ...) |
111 | ||
112 |
## Construct axis |
|
113 | 21x |
if (axes) { |
114 | 21x |
graphics::axis(side = 2, at = seq_row, labels = lab_row, las = 2, |
115 | 21x |
lty = 0, cex.axis = cex.axis, col.axis = col.axis, |
116 | 21x |
font.axis = font.axis) |
117 | 21x |
graphics::axis(side = 3, at = seq_col, labels = lab_col, las = 2, |
118 | 21x |
lty = 0, cex.axis = cex.axis, col.axis = col.axis, |
119 | 21x |
font.axis = font.axis) |
120 |
} |
|
121 | ||
122 |
## Legend |
|
123 | 21x |
if (legend) { |
124 | 13x |
lgd <- attr(data, "legend") |
125 | 13x |
legend_gradient(x = m, y = n, labels = lgd$labels, |
126 | 13x |
at = lgd$at, width = legend_width, col = lgd$colors) |
127 |
} |
|
128 |
} |
|
129 | ||
130 |
legend_gradient <- function(x, y, labels, at, width, col) { |
|
131 | 13x |
legend_image <- grDevices::as.raster(col) |
132 | 13x |
legend_y <- (at - min(at)) * y / diff(range(at)) + 0.5 |
133 | ||
134 | 13x |
graphics::rasterImage(legend_image, xleft = x + 1, ybottom = max(legend_y), |
135 | 13x |
xright = x + 1 + width, ytop = min(legend_y)) |
136 | 13x |
graphics::segments(x0 = x + 1, y0 = legend_y, |
137 | 13x |
x1 = x + 1 + width, y1 = legend_y, |
138 | 13x |
col = "white") |
139 | 13x |
graphics::polygon(x = c(x, x + width, x + width, x) + 1, |
140 | 13x |
y = c(0.5, 0.5, max(legend_y), max(legend_y)), |
141 | 13x |
col = NA, border = "black") |
142 | 13x |
graphics::axis(side = 4, at = legend_y, labels = labels, las = 2) |
143 |
} |
|
144 | ||
145 |
# Panels ======================================================================= |
|
146 |
panel_bertin <- function(x, y, z, color, ..., space = 0.05) { |
|
147 | 5x |
y_bottom <- y - 0.5 |
148 | 5x |
y_top <- y - 0.5 + z - space * 2 |
149 | 5x |
y_top[y_top < y_bottom] <- y_bottom[y_top < y_bottom] |
150 | 5x |
graphics::rect( |
151 | 5x |
xleft = x - 0.5 + space, |
152 | 5x |
ybottom = y_bottom, |
153 | 5x |
xright = x + 0.5 - space, |
154 | 5x |
ytop = y_top, |
155 | 5x |
col = color, |
156 | 5x |
border = "black" |
157 |
) |
|
158 |
} |
|
159 |
panel_matrigraph <- function(x, y, z, ..., reverse = FALSE) { |
|
160 | 2x |
pvi <- data.frame(x = x, y = y, z = z) |
161 | 2x |
pvi$z <- pvi$z / 100 |
162 | 2x |
pvi_plus <- pvi[pvi$z > 1, ] |
163 | 2x |
pvi_plus$z <- pvi_plus$z - 1 |
164 | 2x |
pvi_plus$z[pvi_plus$z > 1] <- 1 |
165 | ||
166 | 2x |
if (reverse) { |
167 | 1x |
pvi_minus <- pvi[pvi$z < 1, ] |
168 | 1x |
pvi_minus$z <- 1 - pvi_minus$z |
169 |
} else { |
|
170 | 1x |
pvi_minus <- pvi |
171 | 1x |
pvi_minus$z[pvi_minus$z > 1] <- 1 |
172 |
} |
|
173 | ||
174 | 2x |
pvi_minus$z <- pvi_minus$z * 0.5 |
175 | 2x |
pvi_plus$z <- pvi_plus$z * 0.5 |
176 | ||
177 | 2x |
col_bkg <- if (reverse) "darkgrey" else "white" |
178 | 2x |
col_minus <- if (reverse) "white" else "darkgrey" |
179 | ||
180 | 2x |
graphics::rect(xleft = pvi$x - 0.5, ybottom = pvi$y - 0.5, |
181 | 2x |
xright = pvi$x + 0.5, ytop = pvi$y + 0.5, |
182 | 2x |
col = col_bkg, border = NA) |
183 | 2x |
graphics::rect(xleft = pvi_minus$x - pvi_minus$z, |
184 | 2x |
ybottom = pvi_minus$y - pvi_minus$z, |
185 | 2x |
xright = pvi_minus$x + pvi_minus$z, |
186 | 2x |
ytop = pvi_minus$y + pvi_minus$z, |
187 | 2x |
col = col_minus, border = NA) |
188 | 2x |
graphics::rect(xleft = pvi_plus$x - pvi_plus$z, |
189 | 2x |
ybottom = pvi_plus$y - pvi_plus$z, |
190 | 2x |
xright = pvi_plus$x + pvi_plus$z, |
191 | 2x |
ytop = pvi_plus$y + pvi_plus$z, |
192 | 2x |
col = "black", border = NA) |
193 |
} |
|
194 |
panel_tiles <- function(x, y, color, ...) { |
|
195 | 7x |
width <- 0.5 |
196 | 7x |
graphics::rect( |
197 | 7x |
xleft = x - width, |
198 | 7x |
ybottom = y - width, |
199 | 7x |
xright = x + width, |
200 | 7x |
ytop = y + width, |
201 | 7x |
col = color, |
202 | 7x |
border = NA |
203 |
) |
|
204 |
} |
|
205 |
panel_spot <- function(x, y, z, color, type, ...) { |
|
206 | 7x |
radius <- abs(z * 0.45) |
207 | 7x |
for (i in seq_along(x)) { |
208 | 185x |
circle(x = x[i], y = y[i], radius = radius[i], |
209 | 185x |
col = color[i], border = color[i]) |
210 | 185x |
if (type == "ring") { |
211 | 123x |
circle(x = x[i], y = y[i], radius = 0.45, |
212 | 123x |
col = NA, border = "black") |
213 |
} |
|
214 |
} |
|
215 |
} |
|
216 | ||
217 |
# Prepare ====================================================================== |
|
218 |
#' Prepare Data for Matrix Plot |
|
219 |
#' |
|
220 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
221 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
222 |
#' individuals for each category, i.e. a contingency table). |
|
223 |
#' @param diag A [`logical`] scalar indicating whether the diagonal of the |
|
224 |
#' matrix should be plotted. Only used if `object` is a symmetric matrix. |
|
225 |
#' @param upper A [`logical`] scalar indicating whether the upper triangle of |
|
226 |
#' the matrix should be plotted. Only used if `object` is a symmetric matrix. |
|
227 |
#' @param lower A [`logical`] scalar indicating whether the lower triangle of |
|
228 |
#' the matrix should be plotted. Only used if `object` is a symmetric matrix. |
|
229 |
#' @param freq A [`logical`] scalar indicating whether conditional proportions |
|
230 |
#' given `margins` should be used (i.e. entries of `object`, divided by the |
|
231 |
#' appropriate marginal sums). |
|
232 |
#' @param margin An [`integer`] vector giving the margins to split by: |
|
233 |
#' `1` indicates individuals/rows (the default), `2` indicates |
|
234 |
#' variables/columns. Only used if `freq` is `TRUE`. |
|
235 |
#' @param scale A [`logical`] scalar indicating whether data should be rescaled |
|
236 |
#' to \eqn{[-1,1]}. Only used if `freq` if `FALSE`. |
|
237 |
#' @param drop_zero A [`logical`] scalar: should zeros be discarded? |
|
238 |
#' @param palette A vector of colors. |
|
239 |
#' @param midpoint A [`numeric`] value specifying the data midpoint. |
|
240 |
#' @param ... Currently not used. |
|
241 |
#' @return |
|
242 |
#' A long [`data.frame`]. |
|
243 |
#' \describe{ |
|
244 |
#' \item{`row`}{} |
|
245 |
#' \item{`column`}{} |
|
246 |
#' \item{`x`,`y`}{Tile center coordinates.} |
|
247 |
#' \item{`z`}{Raw values.} |
|
248 |
#' \item{`value`}{} |
|
249 |
#' \item{`scaled`}{} |
|
250 |
#' \item{`color`}{} |
|
251 |
#' } |
|
252 |
#' @keywords internal |
|
253 |
#' @noRd |
|
254 |
prepare <- function(object, diag = TRUE, upper = TRUE, lower = TRUE, |
|
255 |
freq = FALSE, margin = 1, scale = !freq, drop_zero = FALSE, |
|
256 |
palette = grDevices::hcl.colors(12, "YlOrBr", rev = TRUE), |
|
257 |
midpoint = NULL, ...) { |
|
258 |
## Validation |
|
259 | 21x |
if (!arkhe::is_symmetric(object)) { |
260 | 16x |
diag <- TRUE |
261 | 16x |
upper <- TRUE |
262 | 16x |
lower <- TRUE |
263 |
} |
|
264 | ||
265 |
## Coerce to matrix |
|
266 | 21x |
object <- as.matrix(object) |
267 | ||
268 |
## Relative frequencies |
|
269 | 21x |
val <- if (freq) prop.table(object, margin = margin) else object |
270 | ||
271 |
## Rescale to [-1;1] |
|
272 | 21x |
sca <- if (scale) val / max(abs(val), na.rm = TRUE) else val |
273 | ||
274 | 21x |
val <- as.vector(val) |
275 | 21x |
sca <- as.vector(sca) |
276 | 21x |
min_val <- min(val, na.rm = TRUE) |
277 | 21x |
max_val <- max(val, na.rm = TRUE) |
278 | ||
279 |
## Build a long table |
|
280 | 21x |
row <- row(object, as.factor = TRUE) |
281 | 21x |
col <- col(object, as.factor = TRUE) |
282 | 21x |
data <- data.frame( |
283 | 21x |
row = as.vector(row), |
284 | 21x |
column = as.vector(col), |
285 | 21x |
x = as.numeric(col), |
286 | 21x |
y = as.vector(nrow(object) - as.numeric(row) + 1), # Reverse y for plotting |
287 | 21x |
z = as.vector(object), |
288 | 21x |
value = val, |
289 | 21x |
scaled = sca |
290 |
) |
|
291 | ||
292 |
## Map colors |
|
293 | 21x |
breaks <- pretty(val, n = 5) |
294 | 21x |
domain <- range(c(breaks, min_val, max_val)) |
295 | 21x |
midpoint <- if (is.null(midpoint) & min_val < 0 & max_val > 0) 0 else midpoint |
296 | 21x |
pal <- khroma::palette_color_continuous(colors = palette, domain = domain, midpoint = midpoint) |
297 | 21x |
data$color <- if (length(palette) == length(val)) palette else pal(val) |
298 | ||
299 |
## Clean data |
|
300 | 3x |
if (!upper) data <- data[!upper.tri(object), ] |
301 | 2x |
if (!lower) data <- data[!lower.tri(object), ] |
302 | 5x |
if (!diag) data <- data[data$row != data$column, ] |
303 | 14x |
if (drop_zero) data <- data[data$value != 0, ] |
304 | ||
305 |
## Legend |
|
306 | 21x |
attr(data, "legend") <- list( |
307 | 21x |
labels = if (freq) label_percent(breaks) else breaks, |
308 | 21x |
at = breaks / max(abs(val), na.rm = TRUE), |
309 | 21x |
colors = pal(breaks) |
310 |
) |
|
311 | 21x |
data |
312 |
} |
1 |
# PLOT FORD |
|
2 |
#' @include AllClasses.R AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname plot_ford |
|
7 |
#' @aliases plot_ford,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "plot_ford", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object, weights = FALSE, EPPM = FALSE, |
|
12 |
fill = "darkgrey", border = NA, |
|
13 |
axes = TRUE, ...) { |
|
14 |
## Prepare data |
|
15 | 3x |
n <- nrow(object) |
16 | 3x |
m <- ncol(object) |
17 | 3x |
seq_row <- rev(seq_len(n)) |
18 | 3x |
seq_col <- seq_len(m) |
19 | 3x |
lab_row <- rownames(object) %||% seq_row |
20 | 3x |
lab_col <- colnames(object) %||% seq_col |
21 | ||
22 | 3x |
padding_x <- 0.05 |
23 | 3x |
padding_y <- 0.5 - 0.01 |
24 | 3x |
data <- prepare_ford(object, padding = padding_x) |
25 | ||
26 |
## Graphical parameters |
|
27 | 3x |
cex.axis <- graphics::par("cex.axis") |
28 | 3x |
col.axis <- graphics::par("col.axis") |
29 | 3x |
font.axis <- graphics::par("font.axis") |
30 | ||
31 |
## Save and restore |
|
32 | 3x |
d <- inch2line("M", cex = cex.axis) |
33 | 3x |
mfrow <- graphics::par("mfrow") |
34 | 3x |
mar <- graphics::par("mar") |
35 | 3x |
mar[1] <- 3 |
36 | 3x |
mar[2] <- inch2line(lab_row, cex = cex.axis) + 0.1 |
37 | 3x |
mar[3] <- inch2line(lab_col, cex = cex.axis) + 0.1 |
38 | 3x |
mar[4] <- 0 |
39 | ||
40 | 3x |
old_par <- graphics::par(mfrow = mfrow, mar = mar) |
41 | 3x |
on.exit(graphics::par(old_par)) |
42 | ||
43 | 3x |
if (weights) { |
44 | 1x |
graphics::layout(matrix(c(1, 2), nrow = 1), widths = c(m - 1, 1)) |
45 |
} |
|
46 | ||
47 |
## Open new window |
|
48 | 3x |
grDevices::dev.hold() |
49 | 3x |
on.exit(grDevices::dev.flush(), add = TRUE) |
50 | 3x |
graphics::plot.new() |
51 | ||
52 |
## Set plotting coordinates |
|
53 | 3x |
xlim <- range(data$x - data$value, data$x + data$value) |
54 | 3x |
ylim <- range(data$y) + c(-1, 1) * padding_y |
55 | 3x |
graphics::plot.window(xlim = xlim, ylim = ylim) |
56 | ||
57 |
## Plot |
|
58 | 3x |
graphics::rect( |
59 | 3x |
xleft = data$x - data$value, |
60 | 3x |
ybottom = data$y - padding_y, |
61 | 3x |
xright = data$x + data$value, |
62 | 3x |
ytop = data$y + padding_y, |
63 | 3x |
col = fill, |
64 | 3x |
border = border |
65 |
) |
|
66 | 3x |
if (EPPM) { |
67 | 1x |
graphics::rect( |
68 | 1x |
xleft = data$x - data$eppm, |
69 | 1x |
ybottom = data$y - padding_y, |
70 | 1x |
xright = data$x + data$eppm, |
71 | 1x |
ytop = data$y + padding_y, |
72 | 1x |
col = "black", |
73 | 1x |
border = NA |
74 |
) |
|
75 |
} |
|
76 | ||
77 |
## Construct axis |
|
78 | 3x |
if (axes) { |
79 | 3x |
graphics::axis(side = 2, at = seq_row, labels = lab_row, las = 2, |
80 | 3x |
lty = 0, cex.axis = cex.axis, col.axis = col.axis, |
81 | 3x |
font.axis = font.axis) |
82 | 3x |
graphics::axis(side = 3, at = unique(data$x), labels = lab_col, las = 2, |
83 | 3x |
lty = 0, cex.axis = cex.axis, col.axis = col.axis, |
84 | 3x |
font.axis = font.axis) |
85 | ||
86 | 3x |
x_axis <- data$x[which.max(data$value)] |
87 | 3x |
graphics::axis(side = 1, at = c(x_axis - 0.2, x_axis + 0.2), labels = FALSE) |
88 | 3x |
graphics::axis(side = 1, at = x_axis, labels = label_percent(0.2), |
89 | 3x |
tick = FALSE) |
90 |
} |
|
91 | ||
92 | 3x |
if (weights) { |
93 |
## Graphical parameters |
|
94 | 1x |
mar[2] <- 0.1 |
95 | 1x |
mar[4] <- 0.1 |
96 | 1x |
graphics::par(mar = mar) |
97 | ||
98 |
## Open new window |
|
99 | 1x |
graphics::plot.new() |
100 | ||
101 |
## Set plotting coordinates |
|
102 | 1x |
total <- rowSums(object) |
103 | 1x |
graphics::plot.window(xlim = c(0, max(total) * 1.05), ylim = ylim, |
104 | 1x |
xaxs = "i") |
105 | ||
106 |
## Plot |
|
107 | 1x |
y <- length(total) - seq_along(total) + 1 |
108 | 1x |
graphics::rect( |
109 | 1x |
xleft = 0, |
110 | 1x |
ybottom = y - padding_y, |
111 | 1x |
xright = total, |
112 | 1x |
ytop = y + padding_y, |
113 | 1x |
col = fill, |
114 | 1x |
border = border |
115 |
) |
|
116 | ||
117 |
## Construct axis |
|
118 | 1x |
if (axes) { |
119 | 1x |
graphics::segments(x0 = 0, y0 = 0, x1 = 0, y = n + 0.5, |
120 | 1x |
col = col.axis, lwd = 1) |
121 | 1x |
graphics::axis(side = 1) |
122 |
} |
|
123 |
} |
|
124 | ||
125 | 3x |
invisible(object) |
126 |
} |
|
127 |
) |
|
128 | ||
129 |
#' @export |
|
130 |
#' @rdname plot_ford |
|
131 |
#' @aliases plot_ford,data.frame-method |
|
132 |
setMethod( |
|
133 |
f = "plot_ford", |
|
134 |
signature = signature(object = "data.frame"), |
|
135 |
definition = function(object, weights = FALSE, EPPM = FALSE, |
|
136 |
fill = "darkgrey", border = NA, |
|
137 |
axes = TRUE, ...) { |
|
138 | 2x |
object <- data.matrix(object) |
139 | 2x |
methods::callGeneric(object, weights = weights, EPPM = EPPM, fill = fill, |
140 | 2x |
border = border, axes = axes, ...) |
141 |
} |
|
142 |
) |
|
143 | ||
144 |
#' Prepare data for Ford plot |
|
145 |
#' @return A data.frame. |
|
146 |
#' @keywords internal |
|
147 |
#' @noRd |
|
148 |
prepare_ford <- function(x, padding = 0.05) { |
|
149 |
## EPPM |
|
150 | 3x |
EPPM <- eppm(x) / 100 |
151 | ||
152 |
## Relative frequencies |
|
153 | 3x |
freq <- x / rowSums(x) |
154 | ||
155 |
## Adaptive spacing between columns |
|
156 | 3x |
col_max <- apply(X = freq, MARGIN = 2, FUN = max, na.rm = TRUE) |
157 | 3x |
roll_max <- roll_sum(col_max, n = 2) + padding * max(freq) |
158 | 3x |
cum_max <- c(0, cumsum(roll_max)) |
159 | ||
160 |
## Build a long table |
|
161 | 3x |
row <- row(x, as.factor = TRUE) |
162 | 3x |
col <- col(x, as.factor = TRUE) |
163 | 3x |
data <- data.frame( |
164 | 3x |
row = as.vector(row), |
165 | 3x |
column = as.vector(col), |
166 | 3x |
value = as.vector(freq), |
167 | 3x |
eppm = as.vector(EPPM) |
168 |
) |
|
169 | ||
170 | 3x |
m <- nrow(freq) |
171 | 3x |
data$x <- rep(cum_max, each = m) + 1 |
172 | 3x |
data$y <- as.vector(m + 1 - as.numeric(row)) # Reverse levels order |
173 | ||
174 | 3x |
return(data) |
175 |
} |
1 |
# STATISTICS |
|
2 |
#' @include AllClasses.R AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
expected <- function(x) { |
|
6 | 7x |
m <- nrow(x) |
7 | 7x |
p <- ncol(x) |
8 | ||
9 | 7x |
column_total <- matrix(colSums(x), nrow = m, ncol = p, byrow = TRUE) |
10 | 7x |
row_total <- matrix(rowSums(x), nrow = m, ncol = p, byrow = FALSE) |
11 | 7x |
grand_total <- sum(x) |
12 | ||
13 | 7x |
column_total * row_total / grand_total |
14 |
} |
|
15 | ||
16 |
#' @export |
|
17 |
#' @rdname resample |
|
18 |
#' @aliases resample,numeric-method |
|
19 |
setMethod( |
|
20 |
f = "resample", |
|
21 |
signature = c(object = "numeric"), |
|
22 |
definition = function(object, do, n, size = sum(object), ..., f = NULL) { |
|
23 |
## Validation |
|
24 | 318x |
arkhe::assert_count(object) |
25 | ||
26 | 318x |
prob <- object / sum(object) |
27 | 318x |
replicates <- stats::rmultinom(n, size = size, prob = prob) |
28 | 318x |
values <- apply(X = replicates, MARGIN = 2, FUN = do, ...) |
29 | 318x |
if (is.function(f)) values <- f(values) |
30 | 318x |
values |
31 |
} |
|
32 |
) |
|
33 | ||
34 |
#' Binomial Coefficient |
|
35 |
#' |
|
36 |
#' Computes the number of `k`-combinations from a given set of `n` elements |
|
37 |
#' ("`n` choose `k`"). |
|
38 |
#' @param n A length-one [`numeric`] vector. |
|
39 |
#' @param k A length-one [`numeric`] vector. |
|
40 |
#' @details |
|
41 |
#' Ramanujan approximation is used for \eqn{x!} computation if \eqn{x > 170}. |
|
42 |
#' @return A length-one [`numeric`] vector. |
|
43 |
#' @author N. Frerebeau |
|
44 |
#' @keywords internal |
|
45 |
#' @noRd |
|
46 |
combination <- function(n, k) { |
|
47 |
# Validation |
|
48 | 373x |
arkhe::assert_scalar(n, "numeric") |
49 | 373x |
arkhe::assert_scalar(k, "numeric") |
50 | ||
51 | 372x |
if (n > 170 | k > 170) { |
52 |
## Ramanujan approximation of x! |
|
53 | 1x |
c <- exp(ramanujan(n) - ramanujan(k) - ramanujan(n - k)) |
54 |
} else { |
|
55 | 371x |
c <- factorial(n) / (factorial(k) * factorial(n - k)) |
56 |
} |
|
57 | 372x |
c |
58 |
} |
|
59 | ||
60 |
#' Ramanujan Factorial Approximation |
|
61 |
#' |
|
62 |
#' @param x A [`numeric`] vector. |
|
63 |
#' @return A [`numeric`] vector. |
|
64 |
#' @examples |
|
65 |
#' factorial(50) |
|
66 |
#' exp(ramanujan(50)) |
|
67 |
#' @references |
|
68 |
#' Ramanujan Aiyangar, S. (1988). *The lost notebook and other unpublished |
|
69 |
#' papers*. Berlin: Springer-Verlag. |
|
70 |
#' @author N. Frerebeau |
|
71 |
#' @keywords internal |
|
72 |
#' @noRd |
|
73 |
ramanujan <- function(x){ |
|
74 | 467x |
x * log(x) - x + log(x * (1 + 4 * x * (1 + 2 * x))) / 6 + log(pi) / 2 |
75 |
} |
1 |
# BETA DIVERSITY |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
# Cody ========================================================================= |
|
6 |
#' @export |
|
7 |
#' @rdname index_cody |
|
8 |
#' @aliases index_cody,matrix-method |
|
9 |
setMethod( |
|
10 |
f = "index_cody", |
|
11 |
signature = signature(x = "matrix"), |
|
12 |
definition = function(x) { |
|
13 | 2x |
x <- x > 0 # presence/absence |
14 | ||
15 | 2x |
m <- nrow(x) |
16 | 2x |
first_transect <- x[1, ] |
17 | 2x |
last_transect <- x[m, ] |
18 | ||
19 |
# Number of taxa gained along the transect |
|
20 | 2x |
absent <- x[, !first_transect] # Keep only taxa absent in the first transect |
21 | 2x |
gained <- sum(apply(X = absent, MARGIN = 2, FUN = cumsum)[m, ] > 0) |
22 |
# Number of taxa lost |
|
23 | 2x |
lost <- sum(!last_transect) |
24 | ||
25 | 2x |
beta <- (gained + lost) / 2 |
26 | 2x |
beta |
27 |
} |
|
28 |
) |
|
29 | ||
30 |
# Routledge ==================================================================== |
|
31 |
## Beta R ---------------------------------------------------------------------- |
|
32 |
#' @export |
|
33 |
#' @rdname index_routledge |
|
34 |
#' @aliases index_routledge1,matrix-method |
|
35 |
setMethod( |
|
36 |
f = "index_routledge1", |
|
37 |
signature = signature(x = "matrix"), |
|
38 |
definition = function(x) { |
|
39 | 2x |
x <- x > 0 # presence/absence |
40 | ||
41 | 2x |
p <- ncol(x) |
42 | ||
43 |
# Total number of taxa recorded in the system |
|
44 | 2x |
S <- sum(colSums(x) > 0) |
45 |
# Works out which pairs of taxa occurs together in at least one sample |
|
46 | 2x |
combine <- as.matrix(occurrence(x)) > 0 |
47 | 2x |
r <- sum(combine) / 2 |
48 | ||
49 | 2x |
beta <- S^2 / (2 * r + S) - 1 |
50 | 2x |
return(beta) |
51 |
} |
|
52 |
) |
|
53 | ||
54 |
## Beta I ---------------------------------------------------------------------- |
|
55 |
#' @export |
|
56 |
#' @rdname index_routledge |
|
57 |
#' @aliases index_routledge2,matrix-method |
|
58 |
setMethod( |
|
59 |
f = "index_routledge2", |
|
60 |
signature = signature(x = "matrix"), |
|
61 |
definition = function(x) { |
|
62 | 4x |
x <- x > 0 # presence/absence |
63 | ||
64 |
# Number of samples in which each taxa is present |
|
65 | 4x |
e <- colSums(x) |
66 |
# Taxa richness of each sample |
|
67 | 4x |
alpha <- rowSums(x) |
68 | 4x |
t <- sum(e) |
69 | ||
70 | 4x |
beta <- log(t) - (1 / t) * sum(e * log(e)) - (1 / t) * sum(alpha * log(alpha)) |
71 | 4x |
return(beta) |
72 |
} |
|
73 |
) |
|
74 | ||
75 |
## Beta E ---------------------------------------------------------------------- |
|
76 |
#' @export |
|
77 |
#' @rdname index_routledge |
|
78 |
#' @aliases index_routledge3,matrix-method |
|
79 |
setMethod( |
|
80 |
f = "index_routledge3", |
|
81 |
signature = signature(x = "matrix"), |
|
82 |
definition = function(x) { |
|
83 | 2x |
I <- index_routledge2(x) |
84 | 2x |
E <- exp(I) |
85 | 2x |
return(E) |
86 |
} |
|
87 |
) |
|
88 | ||
89 |
# Whittaker ==================================================================== |
|
90 |
#' @export |
|
91 |
#' @rdname index_whittaker |
|
92 |
#' @aliases index_whittaker,matrix-method |
|
93 |
setMethod( |
|
94 |
f = "index_whittaker", |
|
95 |
signature = signature(x = "matrix"), |
|
96 |
definition = function(x) { |
|
97 | 2x |
x <- x > 0 # presence/absence |
98 | ||
99 |
# Total number of taxa recorded in the system |
|
100 | 2x |
S <- sum(colSums(x) > 0) |
101 |
# Mean taxa richness |
|
102 | 2x |
alpha <- mean(rowSums(x)) |
103 | ||
104 | 2x |
W <- (S / alpha) - 1 |
105 | 2x |
W |
106 |
} |
|
107 |
) |
|
108 | ||
109 |
# Wilson ======================================================================= |
|
110 |
#' @export |
|
111 |
#' @rdname index_wilson |
|
112 |
#' @aliases index_wilson,matrix-method |
|
113 |
setMethod( |
|
114 |
f = "index_wilson", |
|
115 |
signature = signature(x = "matrix"), |
|
116 |
definition = function(x) { |
|
117 | 2x |
x <- x > 0 # presence/absence |
118 | ||
119 | 2x |
m <- nrow(x) |
120 | 2x |
first_transect <- x[1, ] |
121 | 2x |
last_transect <- x[m, ] |
122 | ||
123 |
# Mean taxa richness |
|
124 | 2x |
alpha <- mean(rowSums(x)) |
125 |
# Number of taxa gained along the transect |
|
126 | 2x |
absent <- x[, !first_transect] # Keep only taxa absent in the first transect |
127 | 2x |
gained <- sum(apply(X = absent, MARGIN = 2, FUN = cumsum)[m, ] > 0) |
128 |
# Number of taxa lost |
|
129 | 2x |
lost <- sum(!last_transect) |
130 | ||
131 | 2x |
beta <- (gained + lost) / (2 * alpha) |
132 | 2x |
beta |
133 |
} |
|
134 |
) |
1 |
# PLOT DIVERSITY |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
# DiversityIndex =============================================================== |
|
6 |
#' @export |
|
7 |
#' @method plot DiversityIndex |
|
8 |
plot.DiversityIndex <- function(x, log = "x", |
|
9 |
col.mean = "#DDAA33", col.interval = "#004488", |
|
10 |
lty.mean = "solid", lty.interval = "dashed", |
|
11 |
lwd.mean = 1, lwd.interval = 1, |
|
12 |
xlab = NULL, ylab = NULL, |
|
13 |
main = NULL, sub = NULL, |
|
14 |
ann = graphics::par("ann"), |
|
15 |
axes = TRUE, frame.plot = axes, |
|
16 |
panel.first = NULL, panel.last = NULL, ...) { |
|
17 |
## Prepare data |
|
18 | 2x |
count <- as.data.frame(x) |
19 | ||
20 |
## Open new window |
|
21 | 2x |
grDevices::dev.hold() |
22 | 2x |
on.exit(grDevices::dev.flush(), add = TRUE) |
23 | 2x |
graphics::plot.new() |
24 | ||
25 |
## Set plotting coordinates |
|
26 | 2x |
xlim <- range(count$size) |
27 | 2x |
ylim <- range(count$index) |
28 | 2x |
if (length(x@simulation) != 0) { |
29 | 2x |
xlim <- range(x@simulation[, "size"]) |
30 | 2x |
ylim <- range(x@simulation[, c("lower", "upper")]) |
31 |
} |
|
32 | 2x |
graphics::plot.window(xlim = xlim, ylim = ylim, log = log) |
33 | ||
34 |
## Evaluate pre-plot expressions |
|
35 | 2x |
panel.first |
36 | ||
37 |
## Plot |
|
38 | 2x |
graphics::points(x = count$size, y = count$index, ...) |
39 | ||
40 |
## Simulated assemblages |
|
41 | 2x |
if (length(x@simulation) != 0) { |
42 | 2x |
refined <- x@simulation |
43 | 2x |
graphics::lines(x = refined[, "size"], y = refined[, "mean"], |
44 | 2x |
col = col.mean, lty = lty.mean, lwd = lwd.mean) |
45 | 2x |
graphics::lines(x = refined[, "size"], y = refined[, "lower"], |
46 | 2x |
col = col.interval, lty = lty.interval, lwd = lwd.interval) |
47 | 2x |
graphics::lines(x = refined[, "size"], y = refined[, "upper"], |
48 | 2x |
col = col.interval, lty = lty.interval, lwd = lwd.interval) |
49 |
} |
|
50 | ||
51 |
## Evaluate post-plot and pre-axis expressions |
|
52 | 2x |
panel.last |
53 | ||
54 |
## Construct axis |
|
55 | 2x |
if (axes) { |
56 | 2x |
graphics::axis(side = 1, las = 1) |
57 | 2x |
graphics::axis(side = 2, las = 1) |
58 |
} |
|
59 | ||
60 |
## Plot frame |
|
61 | 2x |
if (frame.plot) { |
62 | 2x |
graphics::box() |
63 |
} |
|
64 | ||
65 |
## Add annotation |
|
66 | 2x |
if (ann) { |
67 | 2x |
y_lab <- switch ( |
68 | 2x |
class(x), |
69 | 2x |
HeterogeneityIndex = tr_("Heterogeneity"), |
70 | 2x |
EvennessIndex = tr_("Evenness"), |
71 | 2x |
RichnessIndex = tr_("Richness"), |
72 | 2x |
tr_("Diversity") |
73 |
) |
|
74 | 2x |
xlab <- xlab %||% tr_("Sample size") |
75 | 2x |
ylab <- ylab %||% sprintf("%s (%s)", y_lab, x@method) |
76 | 2x |
graphics::title(main = main, sub = sub, xlab = xlab, ylab = ylab) |
77 |
} |
|
78 | ||
79 | 2x |
invisible(x) |
80 |
} |
|
81 | ||
82 |
#' @export |
|
83 |
#' @rdname plot_diversity |
|
84 |
#' @aliases plot,DiversityIndex,missing-method |
|
85 |
setMethod("plot", c(x = "DiversityIndex", y = "missing"), plot.DiversityIndex) |
|
86 | ||
87 |
# SHE ========================================================================== |
|
88 |
#' @export |
|
89 |
#' @rdname she |
|
90 |
#' @aliases she,matrix-method |
|
91 |
setMethod( |
|
92 |
f = "she", |
|
93 |
signature = c(object = "matrix"), |
|
94 |
definition = function(object, unbiased = FALSE, |
|
95 |
xlab = NULL, ylab = NULL, |
|
96 |
main = NULL, sub = NULL, |
|
97 |
ann = graphics::par("ann"), |
|
98 |
axes = TRUE, frame.plot = axes, |
|
99 |
panel.first = NULL, panel.last = NULL, |
|
100 |
legend = list(x = "right"), ...) { |
|
101 |
## Prepare data |
|
102 | 1x |
data <- .she(object, unbiased = unbiased) |
103 | ||
104 |
## Open new window |
|
105 | 1x |
grDevices::dev.hold() |
106 | 1x |
on.exit(grDevices::dev.flush(), add = TRUE) |
107 | 1x |
graphics::plot.new() |
108 | ||
109 |
## Set plotting coordinates |
|
110 | 1x |
xlim <- range(data[, 4]) |
111 | 1x |
ylim <- range(data[, -4]) |
112 | 1x |
graphics::plot.window(xlim = xlim, ylim = ylim) |
113 | ||
114 |
## Evaluate pre-plot expressions |
|
115 | 1x |
panel.first |
116 | ||
117 |
## Plot |
|
118 | 1x |
col <- c("black", "red", "blue") |
119 | 1x |
for (i in c(1, 2, 3)) { |
120 | 3x |
graphics::lines(x = data[, 4], y = data[, i], col = col[i], lty = i) |
121 | 3x |
graphics::points(x = data[, 4], y = data[, i], col = col[i], pch = 16) |
122 |
} |
|
123 | ||
124 |
## Evaluate post-plot and pre-axis expressions |
|
125 | 1x |
panel.last |
126 | ||
127 |
## Construct axis |
|
128 | 1x |
if (axes) { |
129 | 1x |
graphics::axis(side = 1, las = 1) |
130 | 1x |
graphics::axis(side = 2, las = 1) |
131 |
} |
|
132 | ||
133 |
## Plot frame |
|
134 | 1x |
if (frame.plot) { |
135 | 1x |
graphics::box() |
136 |
} |
|
137 | ||
138 |
## Add annotation |
|
139 | 1x |
if (ann) { |
140 | 1x |
xlab <- xlab %||% tr_("Sample size") |
141 | 1x |
ylab <- ylab %||% tr_("Diversity") |
142 | 1x |
graphics::title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...) |
143 |
} |
|
144 | ||
145 |
## Legend |
|
146 | 1x |
if (is.list(legend) && length(legend) > 0) { |
147 | 1x |
args <- list(legend = c("ln(S)", "H", "ln(E)"), |
148 | 1x |
col = col, pch = 16, |
149 | 1x |
lty = c(1, 2, 3), bty = "n") |
150 | 1x |
args <- utils::modifyList(args, legend) |
151 | 1x |
do.call(graphics::legend, args = args) |
152 |
} |
|
153 | ||
154 | 1x |
invisible(object) |
155 |
} |
|
156 |
) |
|
157 | ||
158 |
#' @export |
|
159 |
#' @rdname she |
|
160 |
#' @aliases she,data.frame-method |
|
161 |
setMethod( |
|
162 |
f = "she", |
|
163 |
signature = c(object = "data.frame"), |
|
164 |
definition = function(object, unbiased = FALSE, |
|
165 |
xlab = NULL, ylab = NULL, |
|
166 |
main = NULL, sub = NULL, |
|
167 |
ann = graphics::par("ann"), |
|
168 |
axes = TRUE, frame.plot = axes, |
|
169 |
panel.first = NULL, panel.last = NULL, |
|
170 |
legend = list(x = "right"), ...) { |
|
171 | 1x |
object <- data.matrix(object) |
172 | 1x |
methods::callGeneric(object, unbiased = unbiased, |
173 | 1x |
xlab = xlab, ylab = ylab, |
174 | 1x |
main = main, sub = sub, ann = ann, |
175 | 1x |
axes = axes, frame.plot = frame.plot, |
176 | 1x |
panel.first = panel.first, panel.last = panel.last, |
177 | 1x |
legend = legend, ...) |
178 |
} |
|
179 |
) |
|
180 | ||
181 |
#' @param object A matrix. |
|
182 |
#' @noRd |
|
183 |
.she <- function(object, unbiased = FALSE, ...) { |
|
184 | ||
185 | 1x |
n <- nrow(object) |
186 | 1x |
m <- ncol(object) |
187 | ||
188 | 1x |
SHE <- matrix(data = 0, nrow = n, ncol = 4) |
189 | 1x |
y <- numeric(m) |
190 | ||
191 | 1x |
for (i in seq_len(n)) { |
192 | 5x |
x <- object[i, ] + y |
193 | 5x |
n <- sum(x) |
194 | ||
195 |
## Log species abundance |
|
196 | 5x |
S <- log(sum(x > 0)) # Observed species |
197 | ||
198 |
## Shannon index |
|
199 | 5x |
H <- index_shannon(x, evenness = FALSE, unbiased = unbiased) |
200 | ||
201 |
## log evenness |
|
202 | 5x |
E <- H - S |
203 | ||
204 | 5x |
SHE[i, ] <- c(S, H, E, n) |
205 | 5x |
y <- x |
206 |
} |
|
207 | ||
208 | 1x |
SHE |
209 |
} |
|
210 | ||
211 |
# Profile ====================================================================== |
|
212 |
#' @export |
|
213 |
#' @rdname profiles |
|
214 |
#' @aliases profiles,matrix-method |
|
215 |
setMethod( |
|
216 |
f = "profiles", |
|
217 |
signature = c(object = "matrix"), |
|
218 |
definition = function(object, alpha = seq(from = 0, to = 4, by = 0.04), |
|
219 |
color = NULL, symbol = FALSE, |
|
220 |
xlab = NULL, ylab = NULL, |
|
221 |
main = NULL, sub = NULL, |
|
222 |
ann = graphics::par("ann"), |
|
223 |
axes = TRUE, frame.plot = axes, |
|
224 |
panel.first = NULL, panel.last = NULL, |
|
225 |
legend = list(x = "topright"), ...) { |
|
226 |
## Prepare data |
|
227 | 1x |
alpha <- alpha[alpha != 1] |
228 | 1x |
data <- .profiles(object, alpha = alpha) |
229 | 1x |
lab <- rownames(object) |
230 | 1x |
n <- nrow(object) |
231 | ||
232 |
## Graphical parameters |
|
233 | 1x |
lwd <- list(...)$lwd %||% graphics::par("lwd") |
234 | 1x |
if (length(lwd) == 1) lwd <- rep(lwd, length.out = n) |
235 | ||
236 | 1x |
lty <- list(...)$lty %||% graphics::par("lty") |
237 | 1x |
if (length(lty) == 1) lty <- rep(lty, length.out = n) |
238 | ! |
if (!isFALSE(symbol)) lty <- khroma::palette_line(symbol)(lab) |
239 | ||
240 | 1x |
col <- list(...)$col %||% graphics::par("col") |
241 | 1x |
if (length(col) == 1) col <- rep(col, length.out = n) |
242 | 1x |
if (!isFALSE(color)) col <- khroma::palette_color_discrete(color)(lab) |
243 | ||
244 |
## Open new window |
|
245 | 1x |
grDevices::dev.hold() |
246 | 1x |
on.exit(grDevices::dev.flush(), add = TRUE) |
247 | 1x |
graphics::plot.new() |
248 | ||
249 |
## Set plotting coordinates |
|
250 | 1x |
xlim <- range(alpha) |
251 | 1x |
ylim <- range(data, finite = TRUE) |
252 | 1x |
graphics::plot.window(xlim = xlim, ylim = ylim) |
253 | ||
254 |
## Evaluate pre-plot expressions |
|
255 | 1x |
panel.first |
256 | ||
257 |
## Plot |
|
258 | 1x |
for (i in seq_len(n)) { |
259 | 5x |
graphics::lines(x = alpha, y = data[, i], col = col[i], |
260 | 5x |
lty = lty[i], lwd = lwd[i]) |
261 |
} |
|
262 | ||
263 |
## Evaluate post-plot and pre-axis expressions |
|
264 | 1x |
panel.last |
265 | ||
266 |
## Construct axis |
|
267 | 1x |
if (axes) { |
268 | 1x |
graphics::axis(side = 1, las = 1) |
269 | 1x |
graphics::axis(side = 2, las = 1) |
270 |
} |
|
271 | ||
272 |
## Plot frame |
|
273 | 1x |
if (frame.plot) { |
274 | 1x |
graphics::box() |
275 |
} |
|
276 | ||
277 |
## Add annotation |
|
278 | 1x |
if (ann) { |
279 | 1x |
xlab <- xlab %||% "alpha" |
280 | 1x |
ylab <- ylab %||% tr_("Diversity") |
281 | 1x |
graphics::title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...) |
282 |
} |
|
283 | ||
284 |
## Legend |
|
285 | 1x |
if (is.list(legend) && length(legend) > 0) { |
286 | 1x |
args <- list(legend = lab, col = col, lty = lty, lwd = lwd, bty = "n") |
287 | 1x |
args <- utils::modifyList(args, legend) |
288 | 1x |
do.call(graphics::legend, args = args) |
289 |
} |
|
290 | ||
291 | 1x |
invisible(object) |
292 |
} |
|
293 |
) |
|
294 | ||
295 |
#' @export |
|
296 |
#' @rdname profiles |
|
297 |
#' @aliases profiles,data.frame-method |
|
298 |
setMethod( |
|
299 |
f = "profiles", |
|
300 |
signature = c(object = "data.frame"), |
|
301 |
definition = function(object, alpha = seq(from = 0, to = 4, by = 0.04), |
|
302 |
color = NULL, symbol = FALSE, |
|
303 |
xlab = NULL, ylab = NULL, |
|
304 |
main = NULL, sub = NULL, |
|
305 |
ann = graphics::par("ann"), |
|
306 |
axes = TRUE, frame.plot = axes, |
|
307 |
panel.first = NULL, panel.last = NULL, |
|
308 |
legend = list(x = "topright"), ...) { |
|
309 | 1x |
object <- data.matrix(object) |
310 | 1x |
methods::callGeneric(object, alpha = seq(from = 0, to = 4, by = 0.04), |
311 | 1x |
color = color, symbol = symbol, |
312 | 1x |
xlab = xlab, ylab = ylab, |
313 | 1x |
main = main, sub = sub, ann = ann, |
314 | 1x |
axes = axes, frame.plot = frame.plot, |
315 | 1x |
panel.first = panel.first, panel.last = panel.last, |
316 | 1x |
legend = legend, ...) |
317 |
} |
|
318 |
) |
|
319 | ||
320 |
#' @param object A matrix. |
|
321 |
#' @noRd |
|
322 |
.profiles <- function(object, alpha = seq(from = 0, to = 4, by = 0.04), ...) { |
|
323 | ||
324 | 1x |
n <- nrow(object) |
325 | 1x |
m <- length(alpha) |
326 | ||
327 | 1x |
prof <- matrix(data = 0, nrow = m, ncol = n) |
328 | ||
329 | 1x |
index_renyi <- function(z, na.rm = FALSE) { |
330 | 5x |
z <- z[z > 0] # Remove unobserved species |
331 | ! |
if (na.rm) z <- stats::na.omit(z) # Remove NAs |
332 | ||
333 | 5x |
function(x) { |
334 | 500x |
p <- z / sum(z) |
335 | 500x |
exp(log(sum(p^x)) / (1 - x)) |
336 |
} |
|
337 |
} |
|
338 | ||
339 | 1x |
for (i in seq_len(n)) { |
340 | 5x |
x <- object[i, ] |
341 | 5x |
f <- index_renyi(x) |
342 | 5x |
prof[, i] <- vapply(X = alpha, FUN = f, FUN.VALUE = numeric(1), ...) |
343 |
} |
|
344 | ||
345 | 1x |
prof |
346 |
} |
1 |
# SERIOGRAPH |
|
2 |
#' @include AllClasses.R AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname seriograph |
|
7 |
#' @aliases eppm,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "eppm", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object) { |
|
12 | 4x |
eppm <- (object - expected(object)) * 100 / rowSums(object) |
13 | 4x |
eppm[eppm < 0] <- 0 |
14 | 4x |
dimnames(eppm) <- dimnames(object) |
15 | 4x |
eppm |
16 |
} |
|
17 |
) |
|
18 | ||
19 |
#' @export |
|
20 |
#' @rdname seriograph |
|
21 |
#' @aliases eppm,data.frame-method |
|
22 |
setMethod( |
|
23 |
f = "eppm", |
|
24 |
signature = signature(object = "data.frame"), |
|
25 |
definition = function(object) { |
|
26 | 1x |
object <- data.matrix(object) |
27 | 1x |
methods::callGeneric(object) |
28 |
} |
|
29 |
) |
|
30 | ||
31 |
#' @export |
|
32 |
#' @rdname seriograph |
|
33 |
#' @aliases seriograph,matrix-method |
|
34 |
setMethod( |
|
35 |
f = "seriograph", |
|
36 |
signature = signature(object = "matrix"), |
|
37 |
definition = function(object, weights = FALSE, |
|
38 |
fill = "darkgrey", border = NA, |
|
39 |
axes = TRUE, ...) { |
|
40 | 1x |
plot_ford(object, weights = weights, EPPM = TRUE, |
41 | 1x |
fill = fill, border = border, axes = axes) |
42 | 1x |
invisible(object) |
43 |
} |
|
44 |
) |
|
45 | ||
46 |
#' @export |
|
47 |
#' @rdname seriograph |
|
48 |
#' @aliases seriograph,data.frame-method |
|
49 |
setMethod( |
|
50 |
f = "seriograph", |
|
51 |
signature = signature(object = "data.frame"), |
|
52 |
definition = function(object, weights = FALSE, |
|
53 |
fill = "darkgrey", border = NA, |
|
54 |
axes = TRUE, ...) { |
|
55 | 1x |
object <- data.matrix(object) |
56 | 1x |
methods::callGeneric(object, weights = weights, |
57 | 1x |
fill = fill, border = border, axes = axes) |
58 |
} |
|
59 |
) |
1 |
# ALPHA DIVERSITY |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
# Observed ===================================================================== |
|
6 |
#' @export |
|
7 |
#' @rdname observed |
|
8 |
#' @aliases observed,numeric-method |
|
9 |
setMethod( |
|
10 |
f = "observed", |
|
11 |
signature = c(x = "numeric"), |
|
12 |
definition = function(x, na.rm = FALSE, ...) { |
|
13 | 10x |
sum(x > 0, na.rm = na.rm) |
14 |
} |
|
15 |
) |
|
16 | ||
17 |
nobserved <- function(x, n, na.rm = FALSE) { |
|
18 | 20x |
sum(x == n, na.rm = na.rm) |
19 |
} |
|
20 | ||
21 |
#' @export |
|
22 |
#' @rdname observed |
|
23 |
#' @aliases singleton,numeric-method |
|
24 |
setMethod( |
|
25 |
f = "singleton", |
|
26 |
signature = c(x = "numeric"), |
|
27 |
definition = function(x, na.rm = FALSE, ...) { |
|
28 | 10x |
nobserved(x, n = 1, na.rm = na.rm) |
29 |
} |
|
30 |
) |
|
31 | ||
32 |
#' @export |
|
33 |
#' @rdname observed |
|
34 |
#' @aliases doubleton,numeric-method |
|
35 |
setMethod( |
|
36 |
f = "doubleton", |
|
37 |
signature = c(x = "numeric"), |
|
38 |
definition = function(x, na.rm = FALSE, ...) { |
|
39 | 10x |
nobserved(x, n = 2, na.rm = na.rm) |
40 |
} |
|
41 |
) |
|
42 | ||
43 |
# ACE ========================================================================== |
|
44 |
#' @export |
|
45 |
#' @rdname index_ace |
|
46 |
#' @aliases index_ace,numeric-method |
|
47 |
setMethod( |
|
48 |
f = "index_ace", |
|
49 |
signature = c(x = "numeric"), |
|
50 |
definition = function(x, k = 10, na.rm = FALSE, ...) { |
|
51 |
## Validation |
|
52 | 3x |
x <- x[x > 0] # Remove unobserved species |
53 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
54 | ! |
if (anyNA(x)) return(NA) |
55 | ||
56 | 3x |
S_rare <- sum(x <= k) # Number of rare species |
57 | 3x |
S_abund <- sum(x > k) # Number of abundant species |
58 | 3x |
N_rare <- sum(x[x <= k]) # Number of individuals in the rare species |
59 | ||
60 | 3x |
F1 <- sum(x == 1) # Number of singleton species |
61 | 3x |
if (F1 == N_rare) { |
62 | ! |
if (getOption("tabula.verbose")) { |
63 | ! |
message( |
64 | ! |
tr_("ACE is undefined when all rare species are singletons."), "\n", |
65 | ! |
tr_("Consider using the bias-corrected Chao1 estimator instead.") |
66 |
) |
|
67 |
} |
|
68 | ! |
return(NA_real_) |
69 |
} |
|
70 | ||
71 |
## Sample coverage estimate for rare species |
|
72 |
## ie. proportion of all individuals in rare species that are not singletons |
|
73 | 3x |
C_rare <- 1 - (F1 / N_rare) |
74 | ||
75 |
# Coefficient of variation |
|
76 | 3x |
a <- sum(vapply( |
77 | 3x |
X = seq_len(k), |
78 | 30x |
FUN = function(i, x) { i * (i - 1) * sum(x == i) }, |
79 | 3x |
FUN.VALUE = double(1), x = x) |
80 |
) |
|
81 | 3x |
g2 <- max((S_rare / C_rare) * (a / (N_rare * (N_rare - 1))) - 1, 0) |
82 | ||
83 | 3x |
D <- S_abund + (S_rare / C_rare) + (F1 / C_rare) * g2 |
84 | 3x |
D |
85 |
} |
|
86 |
) |
|
87 | ||
88 |
# Berger-Parker ================================================================ |
|
89 |
#' @export |
|
90 |
#' @rdname index_berger |
|
91 |
#' @aliases index_berger,numeric-method |
|
92 |
setMethod( |
|
93 |
f = "index_berger", |
|
94 |
signature = c(x = "numeric"), |
|
95 |
definition = function(x, na.rm = FALSE, ...) { |
|
96 |
## Validation |
|
97 | 7x |
x <- x[x > 0] # Remove unobserved species |
98 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
99 | ! |
if (anyNA(x)) return(NA) |
100 | ||
101 | 7x |
Nmax <- max(x) |
102 | 7x |
N <- sum(x) |
103 | 7x |
d <- Nmax / N |
104 | 7x |
d |
105 |
} |
|
106 |
) |
|
107 | ||
108 |
# Boone ======================================================================== |
|
109 |
#' @export |
|
110 |
#' @rdname index_boone |
|
111 |
#' @aliases index_boone,matrix-method |
|
112 |
setMethod( |
|
113 |
f = "index_boone", |
|
114 |
signature = c(x = "matrix"), |
|
115 |
definition = function(x, j = NULL, na.rm = FALSE, ...) { |
|
116 |
## Validation |
|
117 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
118 | ! |
if (anyNA(x)) return(NA) |
119 | ||
120 | ! |
Y <- colSums(x) # Site-wide totals of each artifact class |
121 | ! |
if (is.null(j)) j <- which.max(Y) |
122 | ||
123 | ! |
W <- Y[j] / Y # Weighting factor |
124 | ! |
P <- W * Y / sum(W * Y) |
125 | ||
126 | ! |
W <- matrix(W, nrow = nrow(x), ncol = ncol(x), byrow = TRUE) |
127 | ! |
P <- matrix(P, nrow = nrow(x), ncol = ncol(x), byrow = TRUE) |
128 | ||
129 | ! |
Wx <- W * x # Weighted counts |
130 | ! |
px <- Wx / rowSums(Wx) # Weighted percentages |
131 | ||
132 | ! |
rowSums((px - P)^2) |
133 |
} |
|
134 |
) |
|
135 | ||
136 |
# Brillouin ==================================================================== |
|
137 |
#' @export |
|
138 |
#' @rdname index_brillouin |
|
139 |
#' @aliases index_brillouin,numeric-method |
|
140 |
setMethod( |
|
141 |
f = "index_brillouin", |
|
142 |
signature = c(x = "numeric"), |
|
143 |
definition = function(x, evenness = FALSE, na.rm = FALSE, ...) { |
|
144 |
## Validation |
|
145 | 13x |
x <- x[x > 0] # Remove unobserved species |
146 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
147 | ! |
if (anyNA(x)) return(NA) |
148 | ||
149 | 13x |
N <- sum(x) |
150 | 13x |
bri <- (lfactorial(N) - sum(lfactorial(x))) / N |
151 | ||
152 | 13x |
if (evenness) { |
153 | 6x |
N <- sum(x) |
154 | 6x |
S <- length(x) # richness = number of different species |
155 | 6x |
a <- trunc(N / S) |
156 | 6x |
r <- N - S * a |
157 | 6x |
c <- (S - r) * lfactorial(a) + r * lfactorial(a + 1) |
158 | 6x |
HBmax <- (1 / N) * (lfactorial(N) - c) |
159 | 6x |
bri <- bri / HBmax |
160 |
} |
|
161 | ||
162 | 13x |
bri |
163 |
} |
|
164 |
) |
|
165 | ||
166 |
# Chao1 ======================================================================== |
|
167 |
#' @export |
|
168 |
#' @rdname index_chao1 |
|
169 |
#' @aliases index_chao1,numeric-method |
|
170 |
setMethod( |
|
171 |
f = "index_chao1", |
|
172 |
signature = c(x = "numeric"), |
|
173 |
definition = function(x, unbiased = FALSE, improved = FALSE, na.rm = FALSE, ...) { |
|
174 |
## Validation |
|
175 | 8x |
x <- x[x > 0] # Remove unobserved species |
176 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
177 | ! |
if (anyNA(x)) return(NA) |
178 | ||
179 | 8x |
S <- length(x) # Number of observed species |
180 | 8x |
N <- sum(x) # Number of individuals |
181 | 8x |
f1 <- sum(x == 1) # Number of singleton species |
182 | 8x |
f2 <- sum(x == 2) # Number of doubleton species |
183 | ||
184 | 8x |
if (unbiased) { |
185 | 4x |
D <- S + (((N - 1) / N) * f1 * (f1 - 1)) / (2 * (f2 + 1)) |
186 |
} else { |
|
187 | 4x |
if (f2 == 0) { |
188 | ! |
D <- S + ((N - 1) / N) * f1 * ((f1 - 1) / 2) |
189 |
} else { |
|
190 | 4x |
D <- S + ((N - 1) / N) * (f1^2 / (2 * f2)) |
191 |
} |
|
192 |
} |
|
193 | 8x |
if (improved) { |
194 | 3x |
f3 <- sum(x == 3) # Number of triple species |
195 | 3x |
f4 <- sum(x == 4) # Number of quadruple species |
196 | 3x |
if (f4 == 0) { |
197 | 1x |
if (getOption("tabula.verbose")) { |
198 | ! |
message( |
199 | ! |
tr_("Improved Chao1 estimator is undefined when there is no quadruple species.") |
200 |
) |
|
201 |
} |
|
202 | 1x |
return(NA_real_) |
203 |
} |
|
204 | ||
205 | 2x |
k <- f1 - ((N - 3) / (N - 1)) * ((f2 * f3) / (2 * f4)) |
206 | 2x |
D <- D + ((N - 3) / N) * (f3 / (4 * f4)) * max(k, 0) |
207 |
} |
|
208 | ||
209 | 7x |
D |
210 |
} |
|
211 |
) |
|
212 | ||
213 |
# Chao2 ======================================================================== |
|
214 |
#' @export |
|
215 |
#' @rdname index_chao2 |
|
216 |
#' @aliases index_chao2,matrix-method |
|
217 |
setMethod( |
|
218 |
f = "index_chao2", |
|
219 |
signature = c(x = "matrix"), |
|
220 |
definition = function(x, unbiased = FALSE, improved = FALSE, ...) { |
|
221 | 6x |
x <- x > 0 # Convert to incidence |
222 | ||
223 | 6x |
q <- colSums(x) # Number of species in the assemblage |
224 | 6x |
q <- q[q > 0] # Remove unobserved species |
225 | 6x |
S <- length(q) # Number of observed species |
226 | 6x |
t <- nrow(x) # Total number of sampling units |
227 | 6x |
q1 <- sum(q == 1) # Number of unique species in the assemblage |
228 | 6x |
q2 <- sum(q == 2) # Number of duplicate species in the assemblage |
229 | ||
230 | 6x |
if (unbiased) { |
231 | 2x |
D <- S + ((t - 1) / t) * q1 * ((q1 - 1) / (2 * (q2 + 1))) |
232 |
} else { |
|
233 | 4x |
if (q2 == 0) { |
234 | 1x |
D <- S + ((t - 1) / t) * q1 * ((q1 - 1) / 2) |
235 |
} else { |
|
236 | 3x |
D <- S + ((t - 1) / t) * (q1^2 / (2 * q2)) |
237 |
} |
|
238 |
} |
|
239 | 6x |
if (improved) { |
240 | 2x |
q3 <- sum(q == 3) # Number of triple species |
241 | 2x |
q4 <- sum(q == 4) # Number of quadruple species |
242 | 2x |
if (q4 == 0) { |
243 | ! |
if (getOption("tabula.verbose")) { |
244 | ! |
message( |
245 | ! |
tr_("Improved Chao2 estimator is undefined when there is no quadruple species.") |
246 |
) |
|
247 |
} |
|
248 | ! |
return(NA_real_) |
249 |
} |
|
250 | ||
251 | 2x |
k <- q1 - ((t - 3) / (t - 1)) * ((q2 * q3) / (2 * q4)) |
252 | 2x |
D <- D + ((t - 3) / (4 * t)) * (q3 / q4) * max(k, 0) |
253 |
} |
|
254 | ||
255 | 6x |
D |
256 |
} |
|
257 |
) |
|
258 | ||
259 |
# ICE ========================================================================== |
|
260 |
#' @export |
|
261 |
#' @rdname index_ice |
|
262 |
#' @aliases index_ice,matrix-method |
|
263 |
setMethod( |
|
264 |
f = "index_ice", |
|
265 |
signature = c(x = "matrix"), |
|
266 |
definition = function(x, k = 10, ...) { |
|
267 | 2x |
x <- x > 0 # Convert to incidence |
268 | ||
269 | 2x |
q <- colSums(x) # Number of species in the assemblage |
270 | 2x |
q <- q[q > 0] # Remove unobserved species |
271 | ||
272 | 2x |
S_infr <- sum(q <= k) # Number of infrequent species |
273 | 2x |
S_freq <- sum(q > k) # Number of frequent species |
274 | 2x |
N_infr <- sum(q[q <= k]) # Number of incidences in the infrequent species |
275 |
# Number of sampling units that include at least one infrequent species |
|
276 | 2x |
t <- sum(rowSums(x[, q <= k]) != 0) |
277 | ||
278 | 2x |
q1 <- sum(q == 1) # Number of unique species in the assemblage |
279 | 2x |
if (q1 == N_infr) { |
280 | ! |
if (getOption("tabula.verbose")) { |
281 | ! |
message( |
282 | ! |
tr_("ICE is undefined when all rare species are singletons."), "\n", |
283 | ! |
tr_("Consider using the bias-corrected Chao2 estimator instead.") |
284 |
) |
|
285 |
} |
|
286 | ! |
return(NA_real_) |
287 |
} |
|
288 | ||
289 |
## Sample coverage estimate |
|
290 |
## ie. proportion of all incidences of infrequent species that are not uniques |
|
291 | 2x |
C_infr <- 1 - (q1 / N_infr) |
292 | ||
293 |
## Coefficient of variation |
|
294 | 2x |
a <- sum(vapply( |
295 | 2x |
X = seq_len(k), |
296 | 20x |
FUN = function(x, q) { x * (x - 1) * sum(q == x) }, |
297 | 2x |
FUN.VALUE = double(1), q = q) |
298 |
) |
|
299 | 2x |
b <- sum(vapply( |
300 | 2x |
X = seq_len(k), |
301 | 20x |
FUN = function(x, q) { x * sum(q == x) }, |
302 | 2x |
FUN.VALUE = double(1), q = q) |
303 |
) |
|
304 | 2x |
c <- sum(vapply( |
305 | 2x |
X = seq_len(k), |
306 | 20x |
FUN = function(x, q) { x * sum(q == x) - 1 }, |
307 | 2x |
FUN.VALUE = double(1), q = q) |
308 |
) |
|
309 | 2x |
g2 <- max((S_infr / C_infr) * (t / (t - 1)) * (a / (b * c)) - 1, 0) |
310 | ||
311 | 2x |
D <- S_freq + S_infr / C_infr + q1 * g2 / C_infr |
312 | 2x |
D |
313 |
} |
|
314 |
) |
|
315 | ||
316 |
# Margalef ===================================================================== |
|
317 |
#' @export |
|
318 |
#' @rdname index_margalef |
|
319 |
#' @aliases index_margalef,numeric-method |
|
320 |
setMethod( |
|
321 |
f = "index_margalef", |
|
322 |
signature = c(x = "numeric"), |
|
323 |
definition = function(x, na.rm = FALSE, ...) { |
|
324 |
## Validation |
|
325 | 7x |
x <- x[x > 0] # Remove unobserved species |
326 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
327 | ! |
if (anyNA(x)) return(NA) |
328 | ||
329 | 7x |
N <- sum(x) # Number of individuals |
330 | 7x |
S <- length(x) # Number of observed species |
331 | 7x |
D <- (S - 1) / log(N, base = exp(1)) |
332 | 7x |
D |
333 |
} |
|
334 |
) |
|
335 | ||
336 |
# McIntosh ===================================================================== |
|
337 |
#' @export |
|
338 |
#' @rdname index_mcintosh |
|
339 |
#' @aliases index_mcintosh,numeric-method |
|
340 |
setMethod( |
|
341 |
f = "index_mcintosh", |
|
342 |
signature = c(x = "numeric"), |
|
343 |
definition = function(x, evenness = FALSE, na.rm = FALSE, ...) { |
|
344 |
## Validation |
|
345 | 12x |
x <- x[x > 0] # Remove unobserved species |
346 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
347 | ! |
if (anyNA(x)) return(NA) |
348 | ||
349 | 12x |
N <- sum(x) |
350 | 12x |
S <- length(x) # richness = number of different species |
351 | 12x |
U <- sqrt(sum(x^2)) |
352 | ||
353 | 12x |
if (evenness) { |
354 | 6x |
mac <- (N - U) / (N - (N / sqrt(S))) |
355 |
} else { |
|
356 | 6x |
mac <- (N - U) / (N - sqrt(N)) |
357 |
} |
|
358 | 12x |
mac |
359 |
} |
|
360 |
) |
|
361 | ||
362 |
# Menhinick ==================================================================== |
|
363 |
#' @export |
|
364 |
#' @rdname index_menhinick |
|
365 |
#' @aliases index_menhinick,numeric-method |
|
366 |
setMethod( |
|
367 |
f = "index_menhinick", |
|
368 |
signature = c(x = "numeric"), |
|
369 |
definition = function(x, na.rm = FALSE, ...) { |
|
370 |
## Validation |
|
371 | 7x |
x <- x[x > 0] # Remove unobserved species |
372 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
373 | ! |
if (anyNA(x)) return(NA) |
374 | ||
375 | 7x |
N <- sum(x) # Number of individuals |
376 | 7x |
S <- length(x) # Number of observed species |
377 | 7x |
D <- S / sqrt(N) |
378 | 7x |
D |
379 |
} |
|
380 |
) |
|
381 | ||
382 |
# Shannon ====================================================================== |
|
383 |
#' @export |
|
384 |
#' @rdname index_shannon |
|
385 |
#' @aliases index_shannon,numeric-method |
|
386 |
setMethod( |
|
387 |
f = "index_shannon", |
|
388 |
signature = c(x = "numeric"), |
|
389 |
definition = function(x, evenness = FALSE, unbiased = FALSE, ACE = FALSE, |
|
390 |
base = exp(1), na.rm = FALSE, ...) { |
|
391 |
## Validation |
|
392 | 159787x |
x <- x[x > 0] # Remove unobserved species |
393 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
394 | ! |
if (anyNA(x)) return(NA) |
395 | ||
396 | 159787x |
N <- sum(x) |
397 | 159787x |
S <- length(x) # richness = number of different species |
398 | 159787x |
p <- x / N |
399 | 159787x |
Hmax <- log(p, base) |
400 | 159787x |
Hmax[is.infinite(Hmax)] <- 0 |
401 | ||
402 | 159787x |
H <- -sum(p * Hmax) |
403 | 159787x |
if (unbiased) { |
404 | ! |
if (ACE) S <- index_ace(x, ...) |
405 | 1x |
H <- H + (S - 1) / (2 * N) |
406 |
} |
|
407 | 386x |
if (evenness) H <- H / log(S) |
408 | 159787x |
H |
409 |
} |
|
410 |
) |
|
411 | ||
412 |
# Simpson ====================================================================== |
|
413 |
#' @export |
|
414 |
#' @rdname index_simpson |
|
415 |
#' @aliases index_simpson,numeric-method |
|
416 |
setMethod( |
|
417 |
f = "index_simpson", |
|
418 |
signature = c(x = "numeric"), |
|
419 |
definition = function(x, evenness = FALSE, unbiased = FALSE, na.rm = FALSE, ...) { |
|
420 |
## Validation |
|
421 | 16x |
x <- x[x > 0] # Remove unobserved species |
422 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
423 | ! |
if (anyNA(x)) return(NA) |
424 | ||
425 | 16x |
N <- sum(x) |
426 | 2x |
if (unbiased) D <- sum(x * (x - 1)) / (N * (N - 1)) |
427 | 14x |
else D <- sum((x / N)^2) |
428 | ||
429 | 16x |
if (evenness) { |
430 | 5x |
D <- 1 / D |
431 | 5x |
S <- length(x) |
432 | 5x |
D <- D / S |
433 |
} |
|
434 | 16x |
D |
435 |
} |
|
436 |
) |
|
437 | ||
438 |
# Squares ====================================================================== |
|
439 |
#' @export |
|
440 |
#' @rdname index_squares |
|
441 |
#' @aliases index_squares,numeric-method |
|
442 |
setMethod( |
|
443 |
f = "index_squares", |
|
444 |
signature = c(x = "numeric"), |
|
445 |
definition = function(x, na.rm = FALSE, ...) { |
|
446 |
## Validation |
|
447 | 1x |
x <- x[x > 0] # Remove unobserved species |
448 | ! |
if (na.rm) x <- stats::na.omit(x) # Remove NAs |
449 | ! |
if (anyNA(x)) return(NA) |
450 | ||
451 | 1x |
S <- length(x) # Number of observed species |
452 | 1x |
N <- sum(x) # Number of individuals |
453 | 1x |
f1 <- sum(x == 1) # Number of singleton species |
454 | ||
455 | 1x |
Ssq <- S + f1^2 * sum(x^2) / (N^2 - f1 * S) |
456 | 1x |
Ssq |
457 |
} |
|
458 |
) |
1 |
# RAREFACTION |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname rarefaction |
|
7 |
#' @aliases rarefaction,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "rarefaction", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object, sample = NULL, method = c("hurlbert", "baxter"), |
|
12 |
step = 1) { |
|
13 |
## Validation |
|
14 | 2x |
method <- match.arg(method, several.ok = FALSE) |
15 | ||
16 | 2x |
n <- nrow(object) |
17 | 2x |
if (is.null(sample)) { |
18 | ! |
sample <- rowSums(object) |
19 |
} |
|
20 | 2x |
if (length(sample) == 1) { |
21 | 2x |
sample <- rep(sample, n) |
22 |
} |
|
23 | 2x |
k <- seq(from = 1, to = max(sample), by = step) |
24 | ||
25 |
## Matrix of results |
|
26 | 2x |
z <- matrix(data = NA_real_, nrow = n, ncol = length(k)) |
27 | 2x |
row_names <- rownames(object) %||% paste0("S", seq_len(n)) # Fix names |
28 | 2x |
dimnames(z) <- list(row_names, k) |
29 | ||
30 | 2x |
for (i in seq_len(n)) { |
31 | 7x |
spl <- k[k <= sample[[i]]] |
32 | 7x |
rare <- vapply( |
33 | 7x |
X = spl, |
34 | 7x |
FUN = function(s, x, f) f(x, s), |
35 | 7x |
FUN.VALUE = numeric(1), |
36 | 7x |
x = object[i, ], |
37 | 7x |
f = get_index(method) # Select method |
38 |
) |
|
39 | 7x |
z[i, seq_along(rare)] <- rare |
40 |
} |
|
41 | ||
42 | 2x |
.RarefactionIndex( |
43 | 2x |
z, |
44 | 2x |
labels = row_names, |
45 | 2x |
size = as.integer(k), |
46 | 2x |
method = method |
47 |
) |
|
48 |
} |
|
49 |
) |
|
50 | ||
51 |
#' @export |
|
52 |
#' @rdname rarefaction |
|
53 |
#' @aliases rarefaction,data.frame-method |
|
54 |
setMethod( |
|
55 |
f = "rarefaction", |
|
56 |
signature = signature(object = "data.frame"), |
|
57 |
definition = function(object, sample = NULL, method = c("hurlbert", "baxter"), |
|
58 |
step = 1) { |
|
59 | 1x |
object <- data.matrix(object) |
60 | 1x |
methods::callGeneric(object, sample = sample, method = method, step = step) |
61 |
} |
|
62 |
) |
|
63 | ||
64 |
# Plot ========================================================================= |
|
65 |
#' @export |
|
66 |
#' @method plot RarefactionIndex |
|
67 |
plot.RarefactionIndex <- function(x, color = NULL, symbol = FALSE, |
|
68 |
xlab = NULL, ylab = NULL, |
|
69 |
main = NULL, sub = NULL, |
|
70 |
ann = graphics::par("ann"), |
|
71 |
axes = TRUE, frame.plot = axes, |
|
72 |
panel.first = NULL, panel.last = NULL, |
|
73 |
legend = list(x = "topleft"), ...) { |
|
74 |
## Prepare data |
|
75 | 2x |
n <- nrow(x) |
76 | 2x |
lab <- labels(x) |
77 | ||
78 |
## Graphical parameters |
|
79 | 2x |
lwd <- list(...)$lwd %||% graphics::par("lwd") |
80 | 2x |
if (length(lwd) == 1) lwd <- rep(lwd, length.out = n) |
81 | ||
82 | 2x |
lty <- list(...)$lty %||% graphics::par("lty") |
83 | 2x |
if (length(lty) == 1) lty <- rep(lty, length.out = n) |
84 | ! |
if (!isFALSE(symbol)) lty <- khroma::palette_line(symbol)(lab) |
85 | ||
86 | 2x |
col <- list(...)$col %||% graphics::par("col") |
87 | 2x |
if (length(col) == 1) col <- rep(col, length.out = n) |
88 | 2x |
if (!isFALSE(color)) col <- khroma::palette_color_discrete(color)(lab) |
89 | ||
90 |
## Open new window |
|
91 | 2x |
grDevices::dev.hold() |
92 | 2x |
on.exit(grDevices::dev.flush(), add = TRUE) |
93 | 2x |
graphics::plot.new() |
94 | ||
95 |
## Set plotting coordinates |
|
96 | 2x |
xlim <- range(x@size) |
97 | 2x |
ylim <- range(x, na.rm = TRUE) |
98 | 2x |
graphics::plot.window(xlim = xlim, ylim = ylim) |
99 | ||
100 |
## Evaluate pre-plot expressions |
|
101 | 2x |
panel.first |
102 | ||
103 |
## Plot |
|
104 | 2x |
for (i in seq_len(n)) { |
105 | 10x |
graphics::lines(x = x@size, y = x[i, ], col = col[i], |
106 | 10x |
lwd = lwd[i], lty = lty[i]) |
107 |
} |
|
108 | ||
109 |
## Evaluate post-plot and pre-axis expressions |
|
110 | 2x |
panel.last |
111 | ||
112 |
## Construct axis |
|
113 | 2x |
if (axes) { |
114 | 2x |
graphics::axis(side = 1, las = 1) |
115 | 2x |
graphics::axis(side = 2, las = 1) |
116 |
} |
|
117 | ||
118 |
## Plot frame |
|
119 | 2x |
if (frame.plot) { |
120 | 2x |
graphics::box() |
121 |
} |
|
122 | ||
123 |
## Add annotation |
|
124 | 2x |
if (ann) { |
125 | 2x |
xlab <- xlab %||% tr_("Sample size") |
126 | 2x |
ylab <- ylab %||% tr_("Expected species index") |
127 | 2x |
graphics::title(main = main, sub = sub, xlab = xlab, ylab = ylab) |
128 |
} |
|
129 | ||
130 |
## Legend |
|
131 | 2x |
if (is.list(legend) && length(legend) > 0) { |
132 | 1x |
args <- list(legend = lab, col = col, lty = lty, lwd = lwd, bty = "n") |
133 | 1x |
args <- utils::modifyList(args, legend) |
134 | 1x |
do.call(graphics::legend, args = args) |
135 |
} |
|
136 | ||
137 | 2x |
invisible(x) |
138 |
} |
|
139 | ||
140 |
#' @export |
|
141 |
#' @rdname plot_rarefaction |
|
142 |
#' @aliases plot,RarefactionIndex,missing-method |
|
143 |
setMethod("plot", c(x = "RarefactionIndex", y = "missing"), plot.RarefactionIndex) |
|
144 | ||
145 |
# Index ======================================================================== |
|
146 |
#' @export |
|
147 |
#' @rdname index_baxter |
|
148 |
#' @aliases index_baxter,numeric-method |
|
149 |
setMethod( |
|
150 |
f = "index_baxter", |
|
151 |
signature = signature(x = "numeric"), |
|
152 |
definition = function(x, sample, ...) { |
|
153 | 116x |
x <- x[x > 0] |
154 | 116x |
N <- sum(x) |
155 | ||
156 | 116x |
E <- suppressWarnings(exp(ramanujan(N - x) + ramanujan(N - sample) - |
157 | 116x |
ramanujan(N - x - sample) - ramanujan(N))) |
158 | 116x |
sum(1 - E, na.rm = FALSE) |
159 |
} |
|
160 |
) |
|
161 | ||
162 |
#' @export |
|
163 |
#' @rdname index_hurlbert |
|
164 |
#' @aliases index_hurlbert,numeric-method |
|
165 |
setMethod( |
|
166 |
f = "index_hurlbert", |
|
167 |
signature = signature(x = "numeric"), |
|
168 |
definition = function(x, sample, ...) { |
|
169 | 27x |
x <- x[x > 0] |
170 | 27x |
N <- sum(x) |
171 | ||
172 | 27x |
E <- vapply( |
173 | 27x |
X = x, |
174 | 27x |
FUN = function(x, N, sample) { |
175 | 204x |
if (N - x > sample) { |
176 | 185x |
combination(N - x, sample) / combination(N, sample) |
177 |
} else { |
|
178 | 19x |
0 |
179 |
} |
|
180 |
}, |
|
181 | 27x |
FUN.VALUE = double(1), |
182 | 27x |
N, sample |
183 |
) |
|
184 | 27x |
sum(1 - E, na.rm = FALSE) |
185 |
} |
|
186 |
) |
1 |
# MUTATORS |
|
2 |
#' @include AllClasses.R |
|
3 |
NULL |
|
4 | ||
5 |
# Getters ====================================================================== |
|
6 |
#' @export |
|
7 |
#' @method labels DiversityIndex |
|
8 | 2x |
labels.DiversityIndex <- function(object, ...) object@labels |
9 | ||
10 |
#' @rdname mutators |
|
11 |
#' @aliases labels,DiversityIndex-method |
|
12 |
setMethod("labels", "DiversityIndex", labels.DiversityIndex) |
|
13 | ||
14 |
#' @export |
|
15 |
#' @method labels RarefactionIndex |
|
16 | 2x |
labels.RarefactionIndex <- function(object, ...) object@labels |
17 | ||
18 |
#' @rdname mutators |
|
19 |
#' @aliases labels,RarefactionIndex-method |
|
20 |
setMethod("labels", "RarefactionIndex", labels.RarefactionIndex) |
|
21 | ||
22 |
#' @export |
|
23 |
#' @rdname mutators |
|
24 |
#' @aliases get_method,DiversityIndex-method |
|
25 |
setMethod( |
|
26 |
f = "get_method", |
|
27 |
signature = "DiversityIndex", |
|
28 | 14x |
definition = function(x) x@method |
29 |
) |
|
30 | ||
31 |
# Setters ====================================================================== |
1 |
# HELPERS |
|
2 | ||
3 |
## https://michaelchirico.github.io/potools/articles/developers.html |
|
4 |
tr_ <- function(...) { |
|
5 | 16x |
enc2utf8(gettext(paste0(...), domain = "R-tabula")) |
6 |
} |
|
7 | ||
8 |
is_incidence <- function(x) { |
|
9 | 1x |
if (is.logical(x)) return(TRUE) |
10 | 20x |
x <- as.numeric(x) |
11 | 20x |
all(x == 0 | x == 1, na.rm = TRUE) |
12 |
} |
|
13 | ||
14 |
#' Rolling Sum |
|
15 |
#' |
|
16 |
#' @param x A [`numeric`] vector. |
|
17 |
#' @param n An [`integer`] giving the rolling window size. |
|
18 |
#' @return A [`numeric`] vector. |
|
19 |
#' @keywords internal |
|
20 |
#' @noRd |
|
21 |
roll_sum <- function(x, n = 2) { |
|
22 | 3x |
utils::tail(cumsum(x) - cumsum(c(rep(0, n), utils::head(x, -n))), -n + 1) |
23 |
} |
|
24 | ||
25 |
#' Plotting Dimensions of Character Strings |
|
26 |
#' |
|
27 |
#' Convert string length in inch to number of (margin) lines. |
|
28 |
#' @param x A [`character`] vector of string whose length is to be calculated. |
|
29 |
#' @param ... Further parameter to be passed to [graphics::strwidth()]`, such as |
|
30 |
#' `cex`. |
|
31 |
#' @return |
|
32 |
#' A [`numeric`] vector (maximum string width in units of margin lines). |
|
33 |
#' @note For internal use only. |
|
34 |
#' @family graphic tools |
|
35 |
#' @keywords internal |
|
36 |
#' @noRd |
|
37 |
inch2line <- function(x, ...) { |
|
38 | 86x |
(max(graphics::strwidth(x, units = "inch", ...)) / |
39 | 86x |
graphics::par("cin")[2] + graphics::par("mgp")[2]) * graphics::par("cex") |
40 |
} |
|
41 | ||
42 |
#' Circle |
|
43 |
#' |
|
44 |
#' Draws a circle. |
|
45 |
#' @param x,y A length-one [`numeric`] vector giving the coordinates of the |
|
46 |
#' center of the circle. |
|
47 |
#' @param radius A length-one [`numeric`] vector giving the radius of the |
|
48 |
#' circle. |
|
49 |
#' @param n A length-on [`integer`] vector specifying the number of vertices to |
|
50 |
#' draw the circle. |
|
51 |
#' @param ... Further parameters to be passed to [graphics::polygon()]. |
|
52 |
#' @return |
|
53 |
#' `circle()` is called it for its side-effects: it results in a graphic |
|
54 |
#' being displayed. |
|
55 |
#' @example inst/examples/ex-circle.R |
|
56 |
#' @author N. Frerebeau |
|
57 |
#' @keywords internal |
|
58 |
#' @noRd |
|
59 |
circle <- function(x, y, radius, ..., n = 100) { |
|
60 | 308x |
angle.inc <- 2 * pi / n |
61 | 308x |
angles <- seq(0, 2 * pi - angle.inc, by = angle.inc) |
62 | ||
63 | 308x |
xv <- cos(angles) * radius + x |
64 | 308x |
yv <- sin(angles) * radius + y |
65 | 308x |
graphics::polygon(xv, yv, ...) |
66 |
} |
|
67 | ||
68 |
#' Label Percentages |
|
69 |
#' |
|
70 |
#' @param x A [`numeric`] vector. |
|
71 |
#' @param digits An [`integer`] indicating the number of decimal places. |
|
72 |
#' If `NULL` (the default), breaks will have the minimum number of digits |
|
73 |
#' needed to show the difference between adjacent values. |
|
74 |
#' @param trim A [`logical`] scalar. If `FALSE` (the default), values are |
|
75 |
#' right-justified to a common width (see [base::format()]). |
|
76 |
#' @return A [`character`] vector. |
|
77 |
#' @keywords internal |
|
78 |
#' @noRd |
|
79 |
label_percent <- function(x, digits = NULL, trim = FALSE) { |
|
80 | 7x |
i <- !is.na(x) |
81 | 7x |
y <- x[i] |
82 | 7x |
y <- abs(y) * 100 |
83 | 7x |
y <- format(y, trim = trim, digits = digits) |
84 | 7x |
y <- paste0(y, "%") |
85 | 7x |
x[i] <- y |
86 | 7x |
x |
87 |
} |
1 |
# GENERIC METHODS |
|
2 |
#' @include AllClasses.R |
|
3 |
NULL |
|
4 | ||
5 |
# Import S4 generics =========================================================== |
|
6 |
#' @importMethodsFrom arkhe jackknife |
|
7 |
#' @importMethodsFrom arkhe bootstrap |
|
8 |
NULL |
|
9 | ||
10 |
# Extract ====================================================================== |
|
11 |
## Mutators -------------------------------------------------------------------- |
|
12 |
#' Get or Set Parts of an Object |
|
13 |
#' |
|
14 |
#' Getters and setters to extract or replace parts of an object. |
|
15 |
#' @param object,x An \R object from which to get or set element(s). |
|
16 |
#' @param ... Currently not used. |
|
17 |
# @param value A possible value for the element(s) of `object` (see below). |
|
18 |
#' @return |
|
19 |
#' * `labels()` returns a suitable set of labels from an object for use in |
|
20 |
#' printing or plotting. |
|
21 |
# @example inst/examples/ex-mutator.R |
|
22 |
#' @author N. Frerebeau |
|
23 |
#' @docType methods |
|
24 |
#' @family mutators |
|
25 |
#' @name mutators |
|
26 |
#' @rdname mutators |
|
27 |
#' @aliases get set |
|
28 |
NULL |
|
29 | ||
30 |
#' @rdname mutators |
|
31 |
#' @aliases get_method-method |
|
32 |
setGeneric( |
|
33 |
name = "get_method", |
|
34 | 14x |
def = function(x) standardGeneric("get_method") |
35 |
) |
|
36 | ||
37 |
## Coerce ---------------------------------------------------------------------- |
|
38 |
#' Coerce to a Data Frame |
|
39 |
#' |
|
40 |
#' @param x An object. |
|
41 |
#' @param row.names,optional Currently not used. |
|
42 |
#' @param ... Currently not used. |
|
43 |
#' @return |
|
44 |
#' A [`data.frame`]. |
|
45 |
#' @author N. Frerebeau |
|
46 |
#' @docType methods |
|
47 |
#' @family mutators |
|
48 |
#' @name data.frame |
|
49 |
#' @rdname data.frame |
|
50 |
NULL |
|
51 | ||
52 |
# Statistic ==================================================================== |
|
53 |
#' Bootstrap Estimation |
|
54 |
#' |
|
55 |
#' Samples randomly from the elements of `object` with replacement. |
|
56 |
#' @param object An \R object (typically a [DiversityIndex-class] object). |
|
57 |
#' @param n A non-negative [`integer`] giving the number of bootstrap |
|
58 |
#' replications. |
|
59 |
#' @param f A [`function`] that takes a single numeric vector (the result of |
|
60 |
#' `do`) as argument. |
|
61 |
#' @return |
|
62 |
#' If `f` is `NULL` (the default), `bootstrap()` returns a named `numeric` |
|
63 |
#' vector with the following elements: |
|
64 |
#' \describe{ |
|
65 |
#' \item{`original`}{The observed value of `do` applied to `object`.} |
|
66 |
#' \item{`mean`}{The bootstrap estimate of mean of `do`.} |
|
67 |
#' \item{`bias`}{The bootstrap estimate of bias of `do`.} |
|
68 |
#' \item{`error`}{he bootstrap estimate of standard error of `do`.} |
|
69 |
#' } |
|
70 |
#' |
|
71 |
#' If `f` is a `function`, `bootstrap()` returns the result of `f` applied to |
|
72 |
#' the `n` values of `do`. |
|
73 |
#' @example inst/examples/ex-bootstrap.R |
|
74 |
#' @author N. Frerebeau |
|
75 |
#' @docType methods |
|
76 |
#' @family resampling methods |
|
77 |
#' @name bootstrap |
|
78 |
#' @rdname bootstrap |
|
79 |
NULL |
|
80 | ||
81 |
#' Jackknife Estimation |
|
82 |
#' |
|
83 |
#' @param object An \R object (typically a [DiversityIndex-class] object). |
|
84 |
#' @param f A [`function`] that takes a single numeric vector (the leave-one-out |
|
85 |
#' values of `do`) as argument. |
|
86 |
#' @return |
|
87 |
#' If `f` is `NULL` (the default), `jackknife()` returns a named `numeric` |
|
88 |
#' vector with the following elements: |
|
89 |
#' \describe{ |
|
90 |
#' \item{`original`}{The observed value of `do` applied to `object`.} |
|
91 |
#' \item{`mean`}{The jackknife estimate of mean of `do`.} |
|
92 |
#' \item{`bias`}{The jackknife estimate of bias of `do`.} |
|
93 |
#' \item{`error`}{he jackknife estimate of standard error of `do`.} |
|
94 |
#' } |
|
95 |
#' |
|
96 |
#' If `f` is a `function`, `jackknife()` returns the result of `f` applied to |
|
97 |
#' the leave-one-out values of `do`. |
|
98 |
#' @example inst/examples/ex-jackknife.R |
|
99 |
#' @author N. Frerebeau |
|
100 |
#' @docType methods |
|
101 |
#' @family resampling methods |
|
102 |
#' @name jackknife |
|
103 |
#' @rdname jackknife |
|
104 |
NULL |
|
105 | ||
106 |
#' Resample |
|
107 |
#' |
|
108 |
#' Simulates observations from a multinomial distribution. |
|
109 |
#' @param object A [`numeric`] vector of count data (absolute frequencies). |
|
110 |
#' @param do A [`function`] that takes `object` as an argument |
|
111 |
#' and returns a single numeric value. |
|
112 |
#' @param n A non-negative [`integer`] specifying the number of bootstrap |
|
113 |
#' replications. |
|
114 |
#' @param size A non-negative [`integer`] specifying the sample size. |
|
115 |
#' @param f A [`function`] that takes a single numeric vector (the result of |
|
116 |
#' `do`) as argument. |
|
117 |
#' @param ... Extra arguments passed to `do`. |
|
118 |
#' @return |
|
119 |
#' If `f` is `NULL`, `resample()` returns the `n` values of `do`. Else, |
|
120 |
#' returns the result of `f` applied to the `n` values of `do`. |
|
121 |
#' @seealso [stats::rmultinom()] |
|
122 |
#' @example inst/examples/ex-resample.R |
|
123 |
#' @author N. Frerebeau |
|
124 |
#' @docType methods |
|
125 |
#' @family resampling methods |
|
126 |
#' @aliases resample-method |
|
127 |
setGeneric( |
|
128 |
name = "resample", |
|
129 | 318x |
def = function(object, ...) standardGeneric("resample") |
130 |
) |
|
131 | ||
132 |
# Diversity ==================================================================== |
|
133 |
## Heterogeneity --------------------------------------------------------------- |
|
134 |
#' Heterogeneity and Evenness |
|
135 |
#' |
|
136 |
#' @description |
|
137 |
#' * `heterogeneity()` computes an heterogeneity or dominance index. |
|
138 |
#' * `evenness()` computes an evenness measure. |
|
139 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
140 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
141 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
142 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
143 |
#' @param method A [`character`] string specifying the index to be computed |
|
144 |
#' (see details). Any unambiguous substring can be given. |
|
145 |
#' @param evenness A [`logical`] scalar: should an evenness measure be computed |
|
146 |
#' instead of an heterogeneity/dominance index? |
|
147 |
#' @param ... Further arguments to be passed to internal methods (see below). |
|
148 |
#' @details |
|
149 |
#' *Diversity* measurement assumes that all individuals in a specific |
|
150 |
#' taxa are equivalent and that all types are equally different from each |
|
151 |
#' other (Peet 1974). A measure of diversity can be achieved by using indices |
|
152 |
#' built on the relative abundance of taxa. These indices (sometimes referred |
|
153 |
#' to as non-parametric indices) benefit from not making assumptions about the |
|
154 |
#' underlying distribution of taxa abundance: they only take relative |
|
155 |
#' abundances of the species that are present and species richness into |
|
156 |
#' account. Peet (1974) refers to them as indices of *heterogeneity*. |
|
157 |
#' |
|
158 |
#' Diversity indices focus on one aspect of the taxa abundance and emphasize |
|
159 |
#' either *[richness][richness()]* (weighting towards uncommon taxa) or |
|
160 |
#' *dominance* (weighting towards abundant taxa; Magurran 1988). |
|
161 |
#' |
|
162 |
#' *Evenness* is a measure of how evenly individuals are distributed across the |
|
163 |
#' sample. |
|
164 |
#' @section Heterogeneity and Evenness Measures: |
|
165 |
#' The following heterogeneity index and corresponding evenness measures |
|
166 |
#' are available (see Magurran 1988 for details): |
|
167 |
#' \describe{ |
|
168 |
#' \item{`berger`}{[Berger-Parker dominance index][index_berger()].} |
|
169 |
#' \item{`boone`}{[Boone heterogeneity measure][index_boone()].} |
|
170 |
#' \item{`brillouin`}{[Brillouin diversity index][index_brillouin()].} |
|
171 |
#' \item{`mcintosh`}{[McIntosh dominance index][index_mcintosh()].} |
|
172 |
#' \item{`shannon`}{[Shannon-Wiener diversity index][index_shannon()].} |
|
173 |
#' \item{`simpson`}{[Simpson dominance index][index_simpson()].} |
|
174 |
#' } |
|
175 |
#' |
|
176 |
#' The `berger`, `mcintosh` and `simpson` methods return a *dominance* index, |
|
177 |
#' not the reciprocal or inverse form usually adopted, so that an increase in |
|
178 |
#' the value of the index accompanies a decrease in diversity. |
|
179 |
#' @return |
|
180 |
#' * `heterogeneity()` returns an [HeterogeneityIndex-class] object. |
|
181 |
#' * `evenness()` returns an [EvennessIndex-class] object. |
|
182 |
#' @seealso [index_berger()], [index_boone()], [index_brillouin()], |
|
183 |
#' [index_mcintosh()], [index_shannon()], [index_simpson()] |
|
184 |
#' @references |
|
185 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
186 |
#' Princeton, NJ: Princeton University Press. |
|
187 |
#' \doi{10.1007/978-94-015-7358-0}. |
|
188 |
#' |
|
189 |
#' Peet, R. K. (1974). The Measurement of Species Diversity. *Annual Review of |
|
190 |
#' Ecology and Systematics*, 5(1), 285-307. |
|
191 |
#' \doi{10.1146/annurev.es.05.110174.001441}. |
|
192 |
#' @example inst/examples/ex-diversity.R |
|
193 |
#' @author N. Frerebeau |
|
194 |
#' @family diversity measures |
|
195 |
#' @docType methods |
|
196 |
#' @aliases heterogeneity-method |
|
197 |
setGeneric( |
|
198 |
name = "heterogeneity", |
|
199 |
def = function(object, ...) standardGeneric("heterogeneity"), |
|
200 |
valueClass = "HeterogeneityIndex" |
|
201 |
) |
|
202 | ||
203 |
#' @rdname heterogeneity |
|
204 |
#' @aliases evenness-method |
|
205 |
setGeneric( |
|
206 |
name = "evenness", |
|
207 |
def = function(object, ...) standardGeneric("evenness"), |
|
208 |
valueClass = "EvennessIndex" |
|
209 |
) |
|
210 | ||
211 |
#' Berger-Parker Dominance Index |
|
212 |
#' |
|
213 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
214 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
215 |
#' removed? |
|
216 |
#' @param ... Currently not used. |
|
217 |
#' @details |
|
218 |
#' The Berger-Parker index expresses the proportional importance of the most |
|
219 |
#' abundant type. This metric is highly biased by sample size and richness, |
|
220 |
#' moreover it does not make use of all the information available from sample. |
|
221 |
#' |
|
222 |
#' This is a *dominance* index, so that an increase in the value of the index |
|
223 |
#' accompanies a decrease in diversity. |
|
224 |
#' @return |
|
225 |
#' A [`numeric`] vector. |
|
226 |
#' @references |
|
227 |
#' Berger, W. H. & Parker, F. L. (1970). Diversity of Planktonic Foraminifera |
|
228 |
#' in Deep-Sea Sediments. *Science*, 168(3937), 1345-1347. |
|
229 |
#' \doi{10.1126/science.168.3937.1345}. |
|
230 |
#' @author N. Frerebeau |
|
231 |
#' @family alpha diversity measures |
|
232 |
#' @docType methods |
|
233 |
#' @aliases index_berger-method |
|
234 |
setGeneric( |
|
235 |
name = "index_berger", |
|
236 | 7x |
def = function(x, ...) standardGeneric("index_berger") |
237 |
) |
|
238 | ||
239 |
#' Boone Heterogeneity Measure |
|
240 |
#' |
|
241 |
#' @param x A \eqn{m \times p}{m x p} `numeric` [`matrix`] of count data |
|
242 |
#' (absolute frequencies, i.e. a contingency table). |
|
243 |
#' @param j An [`integer`] giving the index of the reference type/taxa. |
|
244 |
#' If `NULL` (the default), the most frequent type/taxa in any assemblage will |
|
245 |
#' be used. |
|
246 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
247 |
#' removed? |
|
248 |
#' @param ... Currently not used. |
|
249 |
#' @return |
|
250 |
#' A [`numeric`] vector. |
|
251 |
#' @references |
|
252 |
#' Boone, J. L. (1987). Defining and Measuring Midden Catchment. *American |
|
253 |
#' Antiquity*, 52(2), 336-45. \doi{10.2307/281785}. |
|
254 |
#' |
|
255 |
#' Kintigh, K. W. (1989). Sample Size, Significance, and Measures of |
|
256 |
#' Diversity. In Leonard, R. D. and Jones, G. T., *Quantifying Diversity |
|
257 |
#' in Archaeology*. New Directions in Archaeology. Cambridge: |
|
258 |
#' Cambridge University Press, p. 25-36. |
|
259 |
#' @author N. Frerebeau |
|
260 |
#' @family alpha diversity measures |
|
261 |
#' @docType methods |
|
262 |
#' @aliases index_boone-method |
|
263 |
setGeneric( |
|
264 |
name = "index_boone", |
|
265 | ! |
def = function(x, ...) standardGeneric("index_boone") |
266 |
) |
|
267 | ||
268 |
#' Brillouin Diversity Index. |
|
269 |
#' |
|
270 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
271 |
#' @param evenness A [`numeric`] scalar: should evenness be computed? |
|
272 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
273 |
#' removed? |
|
274 |
#' @param ... Currently not used. |
|
275 |
#' @details |
|
276 |
#' The Brillouin index describes a known collection: it does not assume random |
|
277 |
#' sampling in an infinite population. Pielou (1975) and Laxton (1978) argues |
|
278 |
#' for the use of the Brillouin index in all circumstances, especially in |
|
279 |
#' preference to the Shannon index. |
|
280 |
#' @note |
|
281 |
#' Ramanujan approximation is used for \eqn{x!} computation if \eqn{x > 170}. |
|
282 |
#' @return |
|
283 |
#' A [`numeric`] vector. |
|
284 |
#' @references |
|
285 |
#' Brillouin, L. (1956). *Science and information theory*. New York: |
|
286 |
#' Academic Press. |
|
287 |
#' |
|
288 |
#' Laxton, R. R. (1978). The measure of diversity. *Journal of Theoretical |
|
289 |
#' Biology*, 70(1), 51-67. |
|
290 |
#' \doi{10.1016/0022-5193(78)90302-8}. |
|
291 |
#' |
|
292 |
#' Pielou, E. C. (1975). *Ecological Diversity*. New York: Wiley. |
|
293 |
#' \doi{10.4319/lo.1977.22.1.0174b} |
|
294 |
#' @author N. Frerebeau |
|
295 |
#' @family alpha diversity measures |
|
296 |
#' @docType methods |
|
297 |
#' @aliases index_brillouin-method |
|
298 |
setGeneric( |
|
299 |
name = "index_brillouin", |
|
300 | 13x |
def = function(x, ...) standardGeneric("index_brillouin") |
301 |
) |
|
302 | ||
303 |
#' McIntosh Dominance Index. |
|
304 |
#' |
|
305 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
306 |
#' @param evenness A [`numeric`] scalar: should evenness be computed? |
|
307 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
308 |
#' removed? |
|
309 |
#' @param ... Currently not used. |
|
310 |
#' @details |
|
311 |
#' The McIntosh index expresses the heterogeneity of a sample in geometric |
|
312 |
#' terms. It describes the sample as a point of a \eqn{S}-dimensional |
|
313 |
#' hypervolume and uses the Euclidean distance of this point from the origin. |
|
314 |
#' |
|
315 |
#' This is a *dominance* index, so that an increase in the value of the index |
|
316 |
#' accompanies a decrease in diversity. |
|
317 |
#' @return |
|
318 |
#' A [`numeric`] vector. |
|
319 |
#' @references |
|
320 |
#' McIntosh, R. P. (1967). An Index of Diversity and the Relation of Certain |
|
321 |
#' Concepts to Diversity. *Ecology*, 48(3), 392-404. |
|
322 |
#' \doi{10.2307/1932674}. |
|
323 |
#' @author N. Frerebeau |
|
324 |
#' @family alpha diversity measures |
|
325 |
#' @docType methods |
|
326 |
#' @aliases index_mcintosh-method |
|
327 |
setGeneric( |
|
328 |
name = "index_mcintosh", |
|
329 | 12x |
def = function(x, ...) standardGeneric("index_mcintosh") |
330 |
) |
|
331 | ||
332 |
#' Shannon-Wiener Diversity Index |
|
333 |
#' |
|
334 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
335 |
#' @param evenness A [`numeric`] scalar: should evenness be computed? |
|
336 |
#' @param unbiased A [`logical`] scalar: should the bias-corrected estimator be |
|
337 |
#' used? |
|
338 |
#' @param ACE A [`logical`] scalar: should the ACE species richness estimator be |
|
339 |
#' used in the bias correction? |
|
340 |
#' @param base A positive [`numeric`] value specifying the base with respect to |
|
341 |
#' which logarithms are computed. |
|
342 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
343 |
#' removed? |
|
344 |
#' @param ... Currently not used. |
|
345 |
#' @details |
|
346 |
#' The Shannon index assumes that individuals are randomly sampled from an |
|
347 |
#' infinite population and that all taxa are represented in the sample (it |
|
348 |
#' does not reflect the sample size). The main source of error arises from the |
|
349 |
#' failure to include all taxa in the sample: this error increases as the |
|
350 |
#' proportion of species discovered in the sample declines (Peet 1974, |
|
351 |
#' Magurran 1988). The maximum likelihood estimator (MLE) is used for the |
|
352 |
#' relative abundance, this is known to be negatively biased by sample size. |
|
353 |
#' @return |
|
354 |
#' A [`numeric`] vector. |
|
355 |
#' @references |
|
356 |
#' Peet, R. K. (1974). The Measurement of Species Diversity. *Annual Review of |
|
357 |
#' Ecology and Systematics*, 5(1), 285-307. |
|
358 |
#' \doi{10.1146/annurev.es.05.110174.001441}. |
|
359 |
#' |
|
360 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
361 |
#' Princeton, NJ: Princeton University Press. |
|
362 |
#' \doi{10.1007/978-94-015-7358-0}. |
|
363 |
#' |
|
364 |
#' Shannon, C. E. (1948). A Mathematical Theory of Communication. *The |
|
365 |
#' Bell System Technical Journal*, 27, 379-423. |
|
366 |
#' \doi{10.1002/j.1538-7305.1948.tb01338.x}. |
|
367 |
#' @author N. Frerebeau |
|
368 |
#' @family alpha diversity measures |
|
369 |
#' @docType methods |
|
370 |
#' @aliases index_shannon-method |
|
371 |
setGeneric( |
|
372 |
name = "index_shannon", |
|
373 | 159787x |
def = function(x, ...) standardGeneric("index_shannon") |
374 |
) |
|
375 | ||
376 |
#' Simpson Dominance Index |
|
377 |
#' |
|
378 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
379 |
#' @param evenness A [`numeric`] scalar: should evenness be computed? |
|
380 |
#' @param unbiased A [`logical`] scalar: should the bias-corrected estimator be |
|
381 |
#' used? |
|
382 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
383 |
#' removed? |
|
384 |
#' @param ... Currently not used. |
|
385 |
#' @details |
|
386 |
#' The Simpson index expresses the probability that two individuals randomly |
|
387 |
#' picked from a finite sample belong to two different types. It can be |
|
388 |
#' interpreted as the weighted mean of the proportional abundances. This |
|
389 |
#' metric is a true probability value, it ranges from \eqn{0} (all taxa are |
|
390 |
#' equally present) to \eqn{1} (one taxon dominates the community completely). |
|
391 |
#' |
|
392 |
#' This is a *dominance* index, so that an increase in the value of the index |
|
393 |
#' accompanies a decrease in diversity. |
|
394 |
#' @return |
|
395 |
#' A [`numeric`] vector. |
|
396 |
#' @references |
|
397 |
#' Simpson, E. H. (1949). Measurement of Diversity. *Nature*, 163(4148), |
|
398 |
#' 688-688. \doi{10.1038/163688a0}. |
|
399 |
#' @author N. Frerebeau |
|
400 |
#' @family alpha diversity measures |
|
401 |
#' @docType methods |
|
402 |
#' @aliases index_simpson-method |
|
403 |
setGeneric( |
|
404 |
name = "index_simpson", |
|
405 | 16x |
def = function(x, ...) standardGeneric("index_simpson") |
406 |
) |
|
407 | ||
408 |
## Richness -------------------------------------------------------------------- |
|
409 |
#' Richness |
|
410 |
#' |
|
411 |
#' @description |
|
412 |
#' * `richness()` computes sample richness. |
|
413 |
#' * `composition()` computes asymptotic species richness. |
|
414 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
415 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
416 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
417 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
418 |
#' @param method A [`character`] string or vector of strings specifying the |
|
419 |
#' index to be computed (see details). Any unambiguous substring can be given. |
|
420 |
#' @param ... Further arguments to be passed to internal methods (see below). |
|
421 |
#' @section Details: |
|
422 |
#' The number of observed taxa, provides an instantly comprehensible |
|
423 |
#' expression of diversity. While the number of taxa within a sample |
|
424 |
#' is easy to ascertain, as a term, it makes little sense: some taxa |
|
425 |
#' may not have been seen, or there may not be a fixed number of taxa |
|
426 |
#' (e.g. in an open system; Peet 1974). As an alternative, *richness* |
|
427 |
#' (\eqn{S}) can be used for the concept of taxa number (McIntosh 1967). |
|
428 |
#' |
|
429 |
#' It is not always possible to ensure that all sample sizes are equal |
|
430 |
#' and the number of different taxa increases with sample size and |
|
431 |
#' sampling effort (Magurran 1988). Then, *[rarefaction][rarefaction()]* |
|
432 |
#' (\eqn{E(S)}) is the number of taxa expected if all samples were of a |
|
433 |
#' standard size (i.e. taxa per fixed number of individuals). |
|
434 |
#' Rarefaction assumes that imbalances between taxa are due to sampling and |
|
435 |
#' not to differences in actual abundances. |
|
436 |
#' @section Richness Measures: |
|
437 |
#' The following richness measures are available for count data: |
|
438 |
#' \describe{ |
|
439 |
#' \item{`observed`}{Number of observed taxa/types.} |
|
440 |
#' \item{`margalef`}{[Margalef richness index][index_margalef()].} |
|
441 |
#' \item{`menhinick`}{[Menhinick richness index][index_menhinick()].} |
|
442 |
#' } |
|
443 |
#' |
|
444 |
#' @section Asymptotic Species Richness: |
|
445 |
#' The following measures are available for count data: |
|
446 |
#' \describe{ |
|
447 |
#' \item{`ace`}{[Abundance-based Coverage Estimator][index_ace()].} |
|
448 |
#' \item{`chao1`}{(improved/unbiased) [Chao1 estimator][index_chao1()].} |
|
449 |
#' \item{`squares`}{[Squares estimator][index_squares()].} |
|
450 |
#' } |
|
451 |
#' |
|
452 |
#' The following measures are available for replicated incidence data: |
|
453 |
#' \describe{ |
|
454 |
#' \item{`ice`}{[Incidence-based Coverage Estimator][index_ice()].} |
|
455 |
#' \item{`chao2`}{(improved/unbiased) [Chao2 estimator][index_chao2()].} |
|
456 |
#' } |
|
457 |
#' @return |
|
458 |
#' * `richness()` returns a [RichnessIndex-class] object. |
|
459 |
#' * `composition()` returns a [CompositionIndex-class] object. |
|
460 |
#' @seealso [index_margalef()], [index_menhinick()], [index_ace()], |
|
461 |
#' [index_chao1()], [index_squares()], [index_ice()], [index_chao2()] |
|
462 |
#' @references |
|
463 |
#' Kintigh, K. W. (1989). Sample Size, Significance, and Measures of |
|
464 |
#' Diversity. In Leonard, R. D. and Jones, G. T., *Quantifying Diversity |
|
465 |
#' in Archaeology*. New Directions in Archaeology. Cambridge: |
|
466 |
#' Cambridge University Press, p. 25-36. |
|
467 |
#' |
|
468 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
469 |
#' Princeton, NJ: Princeton University Press. \doi{10.1007/978-94-015-7358-0}. |
|
470 |
#' |
|
471 |
#' Magurran, A E. & Brian J. McGill (2011). *Biological Diversity: |
|
472 |
#' Frontiers in Measurement and Assessment*. Oxford: Oxford University Press. |
|
473 |
#' |
|
474 |
#' McIntosh, R. P. (1967). An Index of Diversity and the Relation of Certain |
|
475 |
#' Concepts to Diversity. *Ecology*, 48(3), 392-404. \doi{10.2307/1932674}. |
|
476 |
#' |
|
477 |
#' Peet, R. K. (1974). The Measurement of Species Diversity. *Annual Review of |
|
478 |
#' Ecology and Systematics*, 5(1), 285-307. |
|
479 |
#' \doi{10.1146/annurev.es.05.110174.001441}. |
|
480 |
#' @seealso [`plot()`][plot_diversity] |
|
481 |
#' @example inst/examples/ex-richness.R |
|
482 |
#' @author N. Frerebeau |
|
483 |
#' @family diversity measures |
|
484 |
#' @docType methods |
|
485 |
#' @aliases richness-method |
|
486 |
setGeneric( |
|
487 |
name = "richness", |
|
488 |
def = function(object, ...) standardGeneric("richness"), |
|
489 |
valueClass = "RichnessIndex" |
|
490 |
) |
|
491 | ||
492 |
#' @rdname richness |
|
493 |
#' @aliases composition-method |
|
494 |
setGeneric( |
|
495 |
name = "composition", |
|
496 |
def = function(object, ...) standardGeneric("composition"), |
|
497 |
valueClass = "CompositionIndex" |
|
498 |
) |
|
499 | ||
500 |
#' Number of Observed Species |
|
501 |
#' |
|
502 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
503 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
504 |
#' removed? |
|
505 |
#' @param ... Currently not used. |
|
506 |
#' @return |
|
507 |
#' A [`numeric`] vector. |
|
508 |
#' @family alpha diversity measures |
|
509 |
#' @docType methods |
|
510 |
#' @aliases observed-method |
|
511 |
setGeneric( |
|
512 |
name = "observed", |
|
513 | 10x |
def = function(x, ...) standardGeneric("observed") |
514 |
) |
|
515 | ||
516 |
#' @rdname observed |
|
517 |
#' @aliases singleton-method |
|
518 |
setGeneric( |
|
519 |
name = "singleton", |
|
520 | 10x |
def = function(x, ...) standardGeneric("singleton") |
521 |
) |
|
522 | ||
523 |
#' @rdname observed |
|
524 |
#' @aliases doubleton-method |
|
525 |
setGeneric( |
|
526 |
name = "doubleton", |
|
527 | 10x |
def = function(x, ...) standardGeneric("doubleton") |
528 |
) |
|
529 | ||
530 |
#' Abundance-based Coverage Estimator |
|
531 |
#' |
|
532 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
533 |
#' @param k A length-one [`numeric`] vector giving the threshold between |
|
534 |
#' rare/infrequent and abundant/frequent species. |
|
535 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
536 |
#' removed? |
|
537 |
#' @param ... Currently not used. |
|
538 |
#' @return |
|
539 |
#' A [`numeric`] vector. |
|
540 |
#' @references |
|
541 |
#' Chao, A. & Lee, S.-M. (1992). Estimating the Number of Classes via Sample |
|
542 |
#' Coverage. *Journal of the American Statistical Association*, 87(417), |
|
543 |
#' 210-217. \doi{10.1080/01621459.1992.10475194}. |
|
544 |
#' @author N. Frerebeau |
|
545 |
#' @family alpha diversity measures |
|
546 |
#' @docType methods |
|
547 |
#' @aliases index_ace-method |
|
548 |
setGeneric( |
|
549 |
name = "index_ace", |
|
550 | 3x |
def = function(x, ...) standardGeneric("index_ace") |
551 |
) |
|
552 | ||
553 |
#' Chao1 Estimator |
|
554 |
#' |
|
555 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
556 |
#' @param unbiased A [`logical`] scalar: should the bias-corrected estimator be |
|
557 |
#' used? |
|
558 |
#' @param improved A [`logical`] scalar: should the improved estimator be used? |
|
559 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
560 |
#' removed? |
|
561 |
#' @param ... Currently not used. |
|
562 |
#' @return |
|
563 |
#' A [`numeric`] vector. |
|
564 |
#' @references |
|
565 |
#' Chao, A. (1984). Nonparametric Estimation of the Number of Classes in a |
|
566 |
#' Population. *Scandinavian Journal of Statistics*, 11(4), 265-270. |
|
567 |
#' |
|
568 |
#' Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. (2014). An improved |
|
569 |
#' nonparametric lower bound of species richness via a modified good-turing |
|
570 |
#' frequency formula. *Biometrics*, 70(3), 671-682. |
|
571 |
#' \doi{10.1111/biom.12200}. |
|
572 |
#' @author N. Frerebeau |
|
573 |
#' @family alpha diversity measures |
|
574 |
#' @docType methods |
|
575 |
#' @aliases index_chao1-method |
|
576 |
setGeneric( |
|
577 |
name = "index_chao1", |
|
578 | 8x |
def = function(x, ...) standardGeneric("index_chao1") |
579 |
) |
|
580 | ||
581 |
#' Chao2 Estimator |
|
582 |
#' |
|
583 |
#' @param x A \eqn{m \times p}{m x p} [`matrix`] of presence/absence data |
|
584 |
#' (incidence). |
|
585 |
#' @param unbiased A [`logical`] scalar: should the bias-corrected estimator be |
|
586 |
#' used? |
|
587 |
#' @param improved A [`logical`] scalar: should the improved estimator be used? |
|
588 |
#' @param ... Currently not used. |
|
589 |
#' @return |
|
590 |
#' A [`numeric`] vector. |
|
591 |
#' @references |
|
592 |
#' Chao, A. (1987). Estimating the Population Size for Capture-Recapture Data |
|
593 |
#' with Unequal Catchability. *Biometrics* 43(4), 783-791. |
|
594 |
#' |
|
595 |
#' Chiu, C.-H., Wang, Y.-T., Walther, B. A. & Chao, A. (2014). An improved |
|
596 |
#' nonparametric lower bound of species richness via a modified good-turing |
|
597 |
#' frequency formula. *Biometrics*, 70(3), 671-682. |
|
598 |
#' \doi{10.2307/2531532}. |
|
599 |
#' @author N. Frerebeau |
|
600 |
#' @family alpha diversity measures |
|
601 |
#' @docType methods |
|
602 |
#' @aliases index_chao2-method |
|
603 |
setGeneric( |
|
604 |
name = "index_chao2", |
|
605 | 6x |
def = function(x, ...) standardGeneric("index_chao2") |
606 |
) |
|
607 | ||
608 |
#' Incidence-based Coverage Estimator |
|
609 |
#' |
|
610 |
#' @param x A \eqn{m \times p}{m x p} [`matrix`] of presence/absence data |
|
611 |
#' (incidence). |
|
612 |
#' @param k A length-one [`numeric`] vector giving the threshold between |
|
613 |
#' rare/infrequent and abundant/frequent species. |
|
614 |
#' @param ... Currently not used. |
|
615 |
#' @return |
|
616 |
#' A [`numeric`] vector. |
|
617 |
#' @references |
|
618 |
#' Chao, A. & Chiu, C.-H. (2016). Species Richness: Estimation and Comparison. |
|
619 |
#' *In* Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, B., Ruggeri, |
|
620 |
#' F. & Teugels, J. L. (Eds.), *Wiley StatsRef: Statistics Reference Online*. |
|
621 |
#' Chichester, UK: John Wiley & Sons, Ltd., 1-26. |
|
622 |
#' \doi{10.1002/9781118445112.stat03432.pub2} |
|
623 |
#' @author N. Frerebeau |
|
624 |
#' @family alpha diversity measures |
|
625 |
#' @docType methods |
|
626 |
#' @aliases index_ice-method |
|
627 |
setGeneric( |
|
628 |
name = "index_ice", |
|
629 | 2x |
def = function(x, ...) standardGeneric("index_ice") |
630 |
) |
|
631 | ||
632 |
#' Margalef Richness Index |
|
633 |
#' |
|
634 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
635 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
636 |
#' removed? |
|
637 |
#' @param ... Currently not used. |
|
638 |
#' @return |
|
639 |
#' A [`numeric`] vector. |
|
640 |
#' @references |
|
641 |
#' Margalef, R. (1958). Information Theory in Ecology. *General Systems*, |
|
642 |
#' 3, 36-71. |
|
643 |
#' @author N. Frerebeau |
|
644 |
#' @family alpha diversity measures |
|
645 |
#' @docType methods |
|
646 |
#' @aliases index_margalef-method |
|
647 |
setGeneric( |
|
648 |
name = "index_margalef", |
|
649 | 7x |
def = function(x, ...) standardGeneric("index_margalef") |
650 |
) |
|
651 | ||
652 |
#' Menhinick Richness Index |
|
653 |
#' |
|
654 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
655 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
656 |
#' removed? |
|
657 |
#' @param ... Currently not used. |
|
658 |
#' @return |
|
659 |
#' A [`numeric`] vector. |
|
660 |
#' @references |
|
661 |
#' Menhinick, E. F. (1964). A Comparison of Some Species-Individuals Diversity |
|
662 |
#' Indices Applied to Samples of Field Insects. *Ecology*, 45(4), 859-861. |
|
663 |
#' \doi{10.2307/1934933}. |
|
664 |
#' @author N. Frerebeau |
|
665 |
#' @family alpha diversity measures |
|
666 |
#' @docType methods |
|
667 |
#' @aliases index_menhinick-method |
|
668 |
setGeneric( |
|
669 |
name = "index_menhinick", |
|
670 | 7x |
def = function(x, ...) standardGeneric("index_menhinick") |
671 |
) |
|
672 | ||
673 |
#' Squares Estimator |
|
674 |
#' |
|
675 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
676 |
#' @param na.rm A [`numeric`] scalar: should missing values (including `NaN`) be |
|
677 |
#' removed? |
|
678 |
#' @param ... Currently not used. |
|
679 |
#' @return |
|
680 |
#' A [`numeric`] vector. |
|
681 |
#' @references |
|
682 |
#' Alroy, J. (2018). Limits to Species Richness in Terrestrial Communities. |
|
683 |
#' *Ecology Letters*, 21(12), 1781-1789. \doi{10.1111/ele.13152}. |
|
684 |
#' @author N. Frerebeau |
|
685 |
#' @family alpha diversity measures |
|
686 |
#' @docType methods |
|
687 |
#' @aliases index_squares-method |
|
688 |
setGeneric( |
|
689 |
name = "index_squares", |
|
690 | 1x |
def = function(x, ...) standardGeneric("index_squares") |
691 |
) |
|
692 | ||
693 |
## Rarefaction ----------------------------------------------------------------- |
|
694 |
#' Rarefaction |
|
695 |
#' |
|
696 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
697 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
698 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
699 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
700 |
#' @param sample A length-one [`numeric`] vector giving the sub-sample size. |
|
701 |
#' The size of sample should be smaller than total community size. |
|
702 |
#' @param method A [`character`] string or vector of strings specifying the |
|
703 |
#' index to be computed (see details). Any unambiguous substring can be given. |
|
704 |
#' @param step An [`integer`] giving the increment of the sample size. |
|
705 |
#' @param ... Currently not used. |
|
706 |
#' @inheritSection richness Details |
|
707 |
#' @section Rarefaction Measures: |
|
708 |
#' The following rarefaction measures are available for count data: |
|
709 |
#' \describe{ |
|
710 |
#' \item{`baxter`}{[Baxter's rarefaction][index_baxter()].} |
|
711 |
#' \item{`hurlbert`}{[Hurlbert's unbiased estimate][index_hurlbert()] of |
|
712 |
#' Sander's rarefaction.} |
|
713 |
#' } |
|
714 |
#' @return |
|
715 |
#' A [RarefactionIndex-class] object. |
|
716 |
#' @example inst/examples/ex-rarefaction.R |
|
717 |
#' @seealso [index_baxter()], [index_hurlbert()], [`plot()`][plot_rarefaction] |
|
718 |
#' @author N. Frerebeau |
|
719 |
#' @family diversity measures |
|
720 |
#' @docType methods |
|
721 |
#' @aliases rarefaction-method |
|
722 |
setGeneric( |
|
723 |
name = "rarefaction", |
|
724 | 3x |
def = function(object, ...) standardGeneric("rarefaction") |
725 |
) |
|
726 | ||
727 |
#' Baxter's Rarefaction |
|
728 |
#' |
|
729 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
730 |
#' @param sample A length-one [`numeric`] vector giving the sub-sample size. |
|
731 |
#' The size of sample should be smaller than total community size. |
|
732 |
#' @param ... Currently not used. |
|
733 |
#' @return |
|
734 |
#' A [`numeric`] vector. |
|
735 |
#' @references |
|
736 |
#' Baxter, M. J. (2001). Methodological Issues in the Study of Assemblage |
|
737 |
#' Diversity. *American Antiquity*, 66(4), 715-725. \doi{10.2307/2694184}. |
|
738 |
#' @author N. Frerebeau |
|
739 |
#' @family alpha diversity measures |
|
740 |
#' @docType methods |
|
741 |
#' @aliases index_baxter-method |
|
742 |
setGeneric( |
|
743 |
name = "index_baxter", |
|
744 | 116x |
def = function(x, ...) standardGeneric("index_baxter") |
745 |
) |
|
746 | ||
747 |
#' Hurlbert's Rarefaction |
|
748 |
#' |
|
749 |
#' Hurlbert's unbiased estimate of Sander's rarefaction. |
|
750 |
#' @param x A [`numeric`] vector of count data (absolute frequencies). |
|
751 |
#' @param sample A length-one [`numeric`] vector giving the sub-sample size. |
|
752 |
#' The size of sample should be smaller than total community size. |
|
753 |
#' @param ... Currently not used. |
|
754 |
#' @return |
|
755 |
#' A [`numeric`] vector. |
|
756 |
#' @references |
|
757 |
#' Hurlbert, S. H. (1971). The Nonconcept of Species Diversity: A Critique and |
|
758 |
#' Alternative Parameters. *Ecology*, 52(4), 577-586. |
|
759 |
#' \doi{10.2307/1934145}. |
|
760 |
#' |
|
761 |
#' Sander, H. L. (1968). Marine Benthic Diversity: A Comparative Study. |
|
762 |
#' *The American Naturalist*, 102(925), 243-282. |
|
763 |
#' @author N. Frerebeau |
|
764 |
#' @family alpha diversity measures |
|
765 |
#' @docType methods |
|
766 |
#' @aliases index_hurlbert-method |
|
767 |
setGeneric( |
|
768 |
name = "index_hurlbert", |
|
769 | 27x |
def = function(x, ...) standardGeneric("index_hurlbert") |
770 |
) |
|
771 | ||
772 |
## Similarity ------------------------------------------------------------------ |
|
773 |
#' Similarity |
|
774 |
#' |
|
775 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
776 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
777 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
778 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
779 |
#' @param method A [`character`] string specifying the method to be |
|
780 |
#' used (see details). Any unambiguous substring can be given. |
|
781 |
#' @param ... Currently not used. |
|
782 |
#' @details |
|
783 |
#' \eqn{\beta}-diversity can be measured by addressing *similarity* |
|
784 |
#' between pairs of samples/cases. |
|
785 |
#' |
|
786 |
#' `bray`, `jaccard`, `morisita` and `sorenson` indices provide a scale of |
|
787 |
#' similarity from \eqn{0}-\eqn{1} where \eqn{1} is perfect similarity and |
|
788 |
#' \eqn{0} is no similarity. |
|
789 |
#' `brainerd` is scaled between \eqn{0} and \eqn{200}. |
|
790 |
#' |
|
791 |
#' \describe{ |
|
792 |
#' \item{`brainerd`}{[Brainerd-Robinson quantitative index][index_brainerd()].} |
|
793 |
#' \item{`bray`}{[Bray-Curtis similarity (Sorenson quantitative index)][index_bray()].} |
|
794 |
#' \item{`jaccard`}{[Jaccard qualitative index][index_jaccard()].} |
|
795 |
#' \item{`morisita`}{[Morisita-Horn quantitative index][index_morisita()].} |
|
796 |
#' \item{`sorenson`}{[Dice-Sorenson index (Sorenson qualitative index)][index_sorenson()].} |
|
797 |
#' } |
|
798 |
#' |
|
799 |
#' For `jaccard` and `sorenson`, data are standardized on a presence/absence |
|
800 |
#' scale (\eqn{0}/\eqn{1}) beforehand. |
|
801 |
#' @return |
|
802 |
#' A [stats::dist] object. |
|
803 |
#' @seealso [index_binomial()], [index_brainerd()], [index_bray()], |
|
804 |
#' [index_jaccard()], [index_morisita()], [index_sorenson()] |
|
805 |
#' @references |
|
806 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
807 |
#' Princeton, NJ: Princeton University Press. \doi{10.1007/978-94-015-7358-0}. |
|
808 |
#' @example inst/examples/ex-similarity.R |
|
809 |
#' @author N. Frerebeau |
|
810 |
#' @family diversity measures |
|
811 |
#' @docType methods |
|
812 |
#' @aliases similarity-method |
|
813 |
setGeneric( |
|
814 |
name = "similarity", |
|
815 | 2x |
def = function(object, ...) standardGeneric("similarity") |
816 |
) |
|
817 | ||
818 |
#' Jaccard Index |
|
819 |
#' |
|
820 |
#' @param x,y A [`numeric`] vector. |
|
821 |
#' @param ... Currently not used. |
|
822 |
#' @details |
|
823 |
#' Data are standardized on a presence/absence scale (\eqn{0}/\eqn{1}) |
|
824 |
#' beforehand. |
|
825 |
#' @return |
|
826 |
#' A [`numeric`] vector. |
|
827 |
#' @references |
|
828 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
829 |
#' Princeton, NJ: Princeton University Press. \doi{10.1007/978-94-015-7358-0}. |
|
830 |
#' @author N. Frerebeau |
|
831 |
#' @family beta diversity measures |
|
832 |
#' @docType methods |
|
833 |
#' @aliases index_jaccard-method |
|
834 |
setGeneric( |
|
835 |
name = "index_jaccard", |
|
836 | 3x |
def = function(x, y, ...) standardGeneric("index_jaccard") |
837 |
) |
|
838 | ||
839 |
#' Dice-Sorenson Index |
|
840 |
#' |
|
841 |
#' @param x,y A [`numeric`] vector. |
|
842 |
#' @param ... Currently not used. |
|
843 |
#' @details |
|
844 |
#' Data are standardized on a presence/absence scale (\eqn{0}/\eqn{1}) |
|
845 |
#' beforehand. |
|
846 |
#' @return |
|
847 |
#' A [`numeric`] vector. |
|
848 |
#' @references |
|
849 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
850 |
#' Princeton, NJ: Princeton University Press. \doi{10.1007/978-94-015-7358-0}. |
|
851 |
#' @author N. Frerebeau |
|
852 |
#' @family beta diversity measures |
|
853 |
#' @docType methods |
|
854 |
#' @aliases index_sorenson-method |
|
855 |
setGeneric( |
|
856 |
name = "index_sorenson", |
|
857 | 2x |
def = function(x, y, ...) standardGeneric("index_sorenson") |
858 |
) |
|
859 | ||
860 |
#' Bray-Curtis Similarity |
|
861 |
#' |
|
862 |
#' Bray and Curtis modified version of the Sorenson index. |
|
863 |
#' @param x,y A [`numeric`] vector. |
|
864 |
#' @param ... Currently not used. |
|
865 |
#' @return |
|
866 |
#' A [`numeric`] vector. |
|
867 |
#' @references |
|
868 |
#' Bray, J. R. & Curtis, J. T. (1957). An Ordination of the Upland Forest |
|
869 |
#' Communities of Southern Wisconsin. *Ecological Monographs*, 27(4), |
|
870 |
#' 325-349. \doi{10.2307/1942268}. |
|
871 |
#' @author N. Frerebeau |
|
872 |
#' @family beta diversity measures |
|
873 |
#' @docType methods |
|
874 |
#' @aliases index_bray-method |
|
875 |
setGeneric( |
|
876 |
name = "index_bray", |
|
877 | 1x |
def = function(x, y, ...) standardGeneric("index_bray") |
878 |
) |
|
879 | ||
880 |
#' Morisita-Horn Quantitative Index |
|
881 |
#' |
|
882 |
#' @param x,y A [`numeric`] vector. |
|
883 |
#' @param ... Currently not used. |
|
884 |
#' @return |
|
885 |
#' A [`numeric`] vector. |
|
886 |
#' @references |
|
887 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
888 |
#' Princeton, NJ: Princeton University Press. \doi{10.1007/978-94-015-7358-0}. |
|
889 |
#' @author N. Frerebeau |
|
890 |
#' @family beta diversity measures |
|
891 |
#' @docType methods |
|
892 |
#' @aliases index_morisita-method |
|
893 |
setGeneric( |
|
894 |
name = "index_morisita", |
|
895 | 1x |
def = function(x, y, ...) standardGeneric("index_morisita") |
896 |
) |
|
897 | ||
898 |
#' Brainerd-Robinson Quantitative Index |
|
899 |
#' |
|
900 |
#' @param x,y A [`numeric`] vector. |
|
901 |
#' @param ... Currently not used. |
|
902 |
#' @details |
|
903 |
#' A city-block metric of similarity between pairs of samples/cases. |
|
904 |
#' @return |
|
905 |
#' A [`numeric`] vector. |
|
906 |
#' @references |
|
907 |
#' Brainerd, G. W. (1951). The Place of Chronological Ordering in |
|
908 |
#' Archaeological Analysis. *American Antiquity*, 16(04), 301-313. |
|
909 |
#' \doi{10.2307/276979}. |
|
910 |
#' |
|
911 |
#' Robinson, W. S. (1951). A Method for Chronologically Ordering Archaeological |
|
912 |
#' Deposits. *American Antiquity*, 16(04), 293-301. \doi{10.2307/276978}. |
|
913 |
#' @author N. Frerebeau |
|
914 |
#' @family beta diversity measures |
|
915 |
#' @docType methods |
|
916 |
#' @aliases index_brainerd-method |
|
917 |
setGeneric( |
|
918 |
name = "index_brainerd", |
|
919 | 37x |
def = function(x, y, ...) standardGeneric("index_brainerd") |
920 |
) |
|
921 | ||
922 |
## Turnover -------------------------------------------------------------------- |
|
923 |
#' Turnover |
|
924 |
#' |
|
925 |
#' Returns the degree of turnover in taxa composition along a gradient or |
|
926 |
#' transect. |
|
927 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
928 |
#' [`data.frame`] of count data or incidence data. A [`data.frame`] |
|
929 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
930 |
#' @param method A [`character`] string specifying the method to be |
|
931 |
#' used (see details). Any unambiguous substring can be given. |
|
932 |
#' @param ... Further arguments to be passed to internal methods. |
|
933 |
#' @details |
|
934 |
#' The following methods can be used to ascertain the degree of *turnover* |
|
935 |
#' in taxa composition along a gradient (\eqn{\beta}-diversity) on qualitative |
|
936 |
#' (presence/absence) data: |
|
937 |
#' |
|
938 |
#' \describe{ |
|
939 |
#' \item{`cody`}{[Cody measure][index_cody()].} |
|
940 |
#' \item{`routledge1`}{[Routledge first measure][index_routledge].} |
|
941 |
#' \item{`routledge2`}{[Routledge second measure][index_routledge].} |
|
942 |
#' \item{`routledge3`}{[Routledge third measure][index_routledge] (exponential |
|
943 |
#' form of the second measure).} |
|
944 |
#' \item{`whittaker`}{[Whittaker measure][index_whittaker()].} |
|
945 |
#' \item{`wilson`}{[Wilson measure][index_wilson()].} |
|
946 |
#' } |
|
947 |
#' |
|
948 |
#' This assumes that the order of the matrix rows (from \eqn{1} to \eqn{n}) |
|
949 |
#' follows the progression along the gradient/transect. |
|
950 |
#' @return |
|
951 |
#' A [`numeric`] vector. |
|
952 |
#' @seealso [index_cody()], [index_routledge1()], [index_routledge2()], |
|
953 |
#' [index_routledge3()], [index_whittaker()], [index_wilson()] |
|
954 |
#' @example inst/examples/ex-turnover.R |
|
955 |
#' @author N. Frerebeau |
|
956 |
#' @family diversity measures |
|
957 |
#' @docType methods |
|
958 |
#' @aliases turnover-method |
|
959 |
setGeneric( |
|
960 |
name = "turnover", |
|
961 | 6x |
def = function(object, ...) standardGeneric("turnover") |
962 |
) |
|
963 | ||
964 |
#' Cody Measure |
|
965 |
#' |
|
966 |
#' @param x A \eqn{m \times p}{m x p} `numeric` [`matrix`] of count data |
|
967 |
#' (absolute frequencies, i.e. a contingency table). |
|
968 |
#' @param ... Currently not used. |
|
969 |
#' @details |
|
970 |
#' This assumes that the order of the matrix rows (from \eqn{1} to \eqn{n}) |
|
971 |
#' follows the progression along the gradient/transect. |
|
972 |
#' @return |
|
973 |
#' A [`numeric`] vector. |
|
974 |
#' @references |
|
975 |
#' Cody, M. L. (1975). Towards a theory of continental species diversity: Bird |
|
976 |
#' distributions over Mediterranean habitat gradients. *In* M. L. Cody & |
|
977 |
#' J. M. Diamond (Eds.), *Ecology and Evolution of Communities*. |
|
978 |
#' Cambridge, MA: Harvard University Press, p. 214-257. |
|
979 |
#' @author N. Frerebeau |
|
980 |
#' @family beta diversity measures |
|
981 |
#' @docType methods |
|
982 |
#' @aliases index_cody-method |
|
983 |
setGeneric( |
|
984 |
name = "index_cody", |
|
985 | 2x |
def = function(x, ...) standardGeneric("index_cody") |
986 |
) |
|
987 | ||
988 |
#' Routledge Measures |
|
989 |
#' |
|
990 |
#' @param x A \eqn{m \times p}{m x p} `numeric` [`matrix`] of count data |
|
991 |
#' (absolute frequencies, i.e. a contingency table). |
|
992 |
#' @param ... Currently not used. |
|
993 |
#' @details |
|
994 |
#' This assumes that the order of the matrix rows (from \eqn{1} to \eqn{n}) |
|
995 |
#' follows the progression along the gradient/transect. |
|
996 |
#' @return |
|
997 |
#' A [`numeric`] vector. |
|
998 |
#' @references |
|
999 |
#' Routledge, R. D. (1977). On Whittaker's Components of Diversity. |
|
1000 |
#' *Ecology*, 58(5), 1120-1127. \doi{10.2307/1936932}. |
|
1001 |
#' @author N. Frerebeau |
|
1002 |
#' @family beta diversity measures |
|
1003 |
#' @docType methods |
|
1004 |
#' @name index_routledge |
|
1005 |
#' @rdname index_routledge |
|
1006 |
NULL |
|
1007 | ||
1008 |
#' @rdname index_routledge |
|
1009 |
#' @aliases index_routledge1-method |
|
1010 |
setGeneric( |
|
1011 |
name = "index_routledge1", |
|
1012 | 2x |
def = function(x, ...) standardGeneric("index_routledge1") |
1013 |
) |
|
1014 | ||
1015 |
#' @rdname index_routledge |
|
1016 |
#' @aliases index_routledge2-method |
|
1017 |
setGeneric( |
|
1018 |
name = "index_routledge2", |
|
1019 | 4x |
def = function(x, ...) standardGeneric("index_routledge2") |
1020 |
) |
|
1021 | ||
1022 |
#' @rdname index_routledge |
|
1023 |
#' @aliases index_routledge3-method |
|
1024 |
setGeneric( |
|
1025 |
name = "index_routledge3", |
|
1026 | 2x |
def = function(x, ...) standardGeneric("index_routledge3") |
1027 |
) |
|
1028 | ||
1029 |
#' Whittaker Measure |
|
1030 |
#' |
|
1031 |
#' @param x A \eqn{m \times p}{m x p} `numeric` [`matrix`] of count data |
|
1032 |
#' (absolute frequencies, i.e. a contingency table). |
|
1033 |
#' @param ... Currently not used. |
|
1034 |
#' @details |
|
1035 |
#' This assumes that the order of the matrix rows (from \eqn{1} to \eqn{n}) |
|
1036 |
#' follows the progression along the gradient/transect. |
|
1037 |
#' @return |
|
1038 |
#' A [`numeric`] vector. |
|
1039 |
#' @references |
|
1040 |
#' Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and |
|
1041 |
#' California. *Ecological Monographs*, 30(3), 279-338. |
|
1042 |
#' \doi{10.2307/1943563}. |
|
1043 |
#' @author N. Frerebeau |
|
1044 |
#' @family beta diversity measures |
|
1045 |
#' @docType methods |
|
1046 |
#' @aliases index_whittaker-method |
|
1047 |
setGeneric( |
|
1048 |
name = "index_whittaker", |
|
1049 | 2x |
def = function(x, ...) standardGeneric("index_whittaker") |
1050 |
) |
|
1051 | ||
1052 |
#' Wilson Measure |
|
1053 |
#' |
|
1054 |
#' @param x A \eqn{m \times p}{m x p} `numeric` [`matrix`] of count data |
|
1055 |
#' (absolute frequencies, i.e. a contingency table). |
|
1056 |
#' @param ... Currently not used. |
|
1057 |
#' @details |
|
1058 |
#' This assumes that the order of the matrix rows (from \eqn{1} to \eqn{n}) |
|
1059 |
#' follows the progression along the gradient/transect. |
|
1060 |
#' @return |
|
1061 |
#' A [`numeric`] vector. |
|
1062 |
#' @references |
|
1063 |
#' Wilson, M. V., & Shmida, A. (1984). Measuring Beta Diversity with |
|
1064 |
#' Presence-Absence Data. *The Journal of Ecology*, 72(3), 1055-1064. |
|
1065 |
#' \doi{10.2307/2259551}. |
|
1066 |
#' @author N. Frerebeau |
|
1067 |
#' @family beta diversity measures |
|
1068 |
#' @docType methods |
|
1069 |
#' @aliases index_wilson-method |
|
1070 |
setGeneric( |
|
1071 |
name = "index_wilson", |
|
1072 | 2x |
def = function(x, ...) standardGeneric("index_wilson") |
1073 |
) |
|
1074 | ||
1075 |
## Co-Occurrence --------------------------------------------------------------- |
|
1076 |
#' Co-Occurrence |
|
1077 |
#' |
|
1078 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
1079 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
1080 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
1081 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
1082 |
#' @param method A [`character`] string specifying the method to be |
|
1083 |
#' used. It must be one of "`absolute`", "`relative`" or "`binomial`" |
|
1084 |
#' (see details). Any unambiguous substring can be given. |
|
1085 |
#' @param ... Currently not used. |
|
1086 |
#' @details |
|
1087 |
#' \describe{ |
|
1088 |
#' \item{`absolute`}{Count how many times each pairs of types occur together |
|
1089 |
#' in at least one sample (absolute frequencies).} |
|
1090 |
#' \item{`relative`}{Count how many times each pairs of types occur together |
|
1091 |
#' in at least one sample (relative frequencies).} |
|
1092 |
#' \item{`binomial`}{[Binomial co-occurrence assessment][index_binomial()].} |
|
1093 |
#' } |
|
1094 |
#' @return |
|
1095 |
#' A [stats::dist] object. |
|
1096 |
#' @example inst/examples/ex-occurrence.R |
|
1097 |
#' @author N. Frerebeau |
|
1098 |
#' @family diversity measures |
|
1099 |
#' @docType methods |
|
1100 |
#' @aliases occurrence-method |
|
1101 |
setGeneric( |
|
1102 |
name = "occurrence", |
|
1103 | 4x |
def = function(object, ...) standardGeneric("occurrence") |
1104 |
) |
|
1105 | ||
1106 |
#' Binomial Co-Occurrence Assessment |
|
1107 |
#' |
|
1108 |
#' @param x,y A [`numeric`] vector. |
|
1109 |
#' @param ... Currently not used. |
|
1110 |
#' @details |
|
1111 |
#' This assesses the degree of co-occurrence between taxa/types within a |
|
1112 |
#' dataset. The strongest associations are shown by large positive numbers, |
|
1113 |
#' the strongest segregations by large negative numbers. |
|
1114 |
#' |
|
1115 |
#' The Binomial co-occurrence assessment approximates a Z-score. |
|
1116 |
#' @return |
|
1117 |
#' A [`numeric`] vector. |
|
1118 |
#' @references |
|
1119 |
#' Kintigh, K. (2006). Ceramic Dating and Type Associations. In J. Hantman and |
|
1120 |
#' R. Most (eds.), *Managing Archaeological Data: Essays in Honor of |
|
1121 |
#' Sylvia W. Gaines*. Anthropological Research Paper, 57. Tempe, AZ: Arizona |
|
1122 |
#' State University, p. 17-26. |
|
1123 |
#' @author N. Frerebeau |
|
1124 |
#' @family beta diversity measures |
|
1125 |
#' @docType methods |
|
1126 |
#' @aliases index_binomial-method |
|
1127 |
setGeneric( |
|
1128 |
name = "index_binomial", |
|
1129 | 1x |
def = function(x, y, ...) standardGeneric("index_binomial") |
1130 |
) |
|
1131 | ||
1132 |
## Simulate -------------------------------------------------------------------- |
|
1133 |
#' Measure Diversity by Comparing to Simulated Assemblages |
|
1134 |
#' |
|
1135 |
#' @param object A [DiversityIndex-class] object. |
|
1136 |
#' @param interval A [`character`] string giving the type of confidence |
|
1137 |
#' interval to be returned. It must be one "`percentiles`" (sample quantiles, |
|
1138 |
#' as described in Kintigh 1984; the default), "`student`" or "`normal`". |
|
1139 |
#' Any unambiguous substring can be given. |
|
1140 |
#' @param level A length-one [`numeric`] vector giving the confidence level. |
|
1141 |
#' @param step An [`integer`] giving the increment of the sample size. |
|
1142 |
#' @param n A non-negative [`integer`] giving the number of bootstrap |
|
1143 |
#' replications. |
|
1144 |
#' @param progress A [`logical`] scalar: should a progress bar be displayed? |
|
1145 |
#' @return |
|
1146 |
#' Returns a [DiversityIndex-class] object. |
|
1147 |
#' @references |
|
1148 |
#' Baxter, M. J. (2001). Methodological Issues in the Study of Assemblage |
|
1149 |
#' Diversity. *American Antiquity*, 66(4), 715-725. \doi{10.2307/2694184}. |
|
1150 |
#' |
|
1151 |
#' Kintigh, K. W. (1984). Measuring Archaeological Diversity by Comparison |
|
1152 |
#' with Simulated Assemblages. *American Antiquity*, 49(1), 44-54. |
|
1153 |
#' \doi{10.2307/280511}. |
|
1154 |
#' @seealso [`plot()`][plot_diversity], [resample()] |
|
1155 |
#' @example inst/examples/ex-plot_diversity.R |
|
1156 |
#' @author N. Frerebeau |
|
1157 |
#' @family diversity measures |
|
1158 |
#' @docType methods |
|
1159 |
#' @name simulate |
|
1160 |
#' @rdname simulate |
|
1161 |
NULL |
|
1162 | ||
1163 |
## Diversity Test -------------------------------------------------------------- |
|
1164 |
#' Diversity Test |
|
1165 |
#' |
|
1166 |
#' Compares Shannon/Simpson diversity between samples. |
|
1167 |
#' @param x,y A [`numeric`] vector, a \eqn{m \times p}{m x p} [`matrix`] or |
|
1168 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
1169 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
1170 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
1171 |
#' @param adjust A [`character`] string specifying the method for |
|
1172 |
#' adjusting \eqn{p} values (see [stats::p.adjust()]). |
|
1173 |
#' @param ... Further arguments to be passed to internal methods. |
|
1174 |
#' @return |
|
1175 |
#' If `x` and `y` are `numeric` vectors, returns a [`list`] containing the |
|
1176 |
#' following components: |
|
1177 |
#' \describe{ |
|
1178 |
#' \item{`statistic`}{The value of the t-statistic.} |
|
1179 |
#' \item{`parameter`}{The degrees of freedom for the t-statistic.} |
|
1180 |
#' \item{`p.value`}{The p-value for the test.} |
|
1181 |
#' } |
|
1182 |
#' |
|
1183 |
#' If `x` is a `matrix` or a `data.frame`, returns a table of adjusted p-values |
|
1184 |
#' in lower triangular form. |
|
1185 |
#' @example inst/examples/ex-test.R |
|
1186 |
#' @author N. Frerebeau |
|
1187 |
#' @references |
|
1188 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
1189 |
#' Princeton, NJ: Princeton University Press. \doi{10.1007/978-94-015-7358-0}. |
|
1190 |
#' @family statistics |
|
1191 |
#' @docType methods |
|
1192 |
#' @name test |
|
1193 |
#' @rdname test |
|
1194 |
NULL |
|
1195 | ||
1196 |
#' @rdname test |
|
1197 |
#' @aliases test_shannon-method |
|
1198 |
setGeneric( |
|
1199 |
name = "test_shannon", |
|
1200 | 3x |
def = function(x, y, ...) standardGeneric("test_shannon") |
1201 |
) |
|
1202 | ||
1203 |
#' @rdname test |
|
1204 |
#' @aliases test_simpson-method |
|
1205 |
setGeneric( |
|
1206 |
name = "test_simpson", |
|
1207 | 3x |
def = function(x, y, ...) standardGeneric("test_simpson") |
1208 |
) |
|
1209 | ||
1210 |
# Plot ========================================================================= |
|
1211 |
## Diversity ------------------------------------------------------------------- |
|
1212 |
#' Diversity Plot |
|
1213 |
#' |
|
1214 |
#' @param x A [DiversityIndex-class] object to be plotted. |
|
1215 |
#' @param log A [`character`] string indicating which axes should be in log |
|
1216 |
#' scale. Defaults to `x`. |
|
1217 |
#' @param col.mean,col.interval A [`character`] string specifying the |
|
1218 |
#' color of the lines. |
|
1219 |
#' @param lty.mean,lty.interval A [`character`] string or [`numeric`] |
|
1220 |
#' value specifying the line types. |
|
1221 |
#' @param lwd.mean,lwd.interval A non-negative [`numeric`] value specifying |
|
1222 |
#' the line widths. |
|
1223 |
#' @param xlab,ylab A [`character`] vector giving the x and y axis labels. |
|
1224 |
#' @param main A [`character`] string giving a main title for the plot. |
|
1225 |
#' @param sub A [`character`] string giving a subtitle for the plot. |
|
1226 |
#' @param ann A [`logical`] scalar: should the default annotation (title and x, |
|
1227 |
#' y and z axis labels) appear on the plot? |
|
1228 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? |
|
1229 |
#' @param frame.plot A [`logical`] scalar: should a box be drawn around the |
|
1230 |
#' plot? |
|
1231 |
#' @param panel.first An an `expression` to be evaluated after the plot axes are |
|
1232 |
#' set up but before any plotting takes place. This can be useful for drawing |
|
1233 |
#' background grids. |
|
1234 |
#' @param panel.last An `expression` to be evaluated after plotting has taken |
|
1235 |
#' place but before the axes, title and box are added. |
|
1236 |
#' @param ... Further [graphical parameters][graphics::par] to be passed to |
|
1237 |
#' [graphics::points()], particularly, `cex`, `col` and `pch`. |
|
1238 |
#' @return |
|
1239 |
#' `plot()` is called for its side-effects: it results in a graphic being |
|
1240 |
#' displayed (invisibly returns `x`). |
|
1241 |
#' @example inst/examples/ex-plot_diversity.R |
|
1242 |
#' @author N. Frerebeau |
|
1243 |
#' @family diversity measures |
|
1244 |
#' @docType methods |
|
1245 |
#' @name plot_diversity |
|
1246 |
#' @rdname plot_diversity |
|
1247 |
NULL |
|
1248 | ||
1249 |
#' Rarefaction Plot |
|
1250 |
#' |
|
1251 |
#' @param x A [RarefactionIndex-class] object to be plotted. |
|
1252 |
#' @param color A vector of colors (will be mapped to the rownames of `object`). |
|
1253 |
#' If `color` is a named a named vector, then the colors will be associated |
|
1254 |
#' with the rownames of `object`. Ignored if set to `FALSE`. |
|
1255 |
#' @param symbol A specification for the line type (will be mapped to |
|
1256 |
#' the names of `x`). If `symbol` is a named a named vector, then the |
|
1257 |
#' line types will be associated with the names of `x`. |
|
1258 |
#' Ignored if set to `FALSE`. |
|
1259 |
#' @param xlab,ylab A [`character`] vector giving the x and y axis labels. |
|
1260 |
#' @param main A [`character`] string giving a main title for the plot. |
|
1261 |
#' @param sub A [`character`] string giving a subtitle for the plot. |
|
1262 |
#' @param ann A [`logical`] scalar: should the default annotation (title and x, |
|
1263 |
#' y and z axis labels) appear on the plot? |
|
1264 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? |
|
1265 |
#' @param frame.plot A [`logical`] scalar: should a box be drawn around the |
|
1266 |
#' plot? |
|
1267 |
#' @param panel.first An an `expression` to be evaluated after the plot axes are |
|
1268 |
#' set up but before any plotting takes place. This can be useful for drawing |
|
1269 |
#' background grids. |
|
1270 |
#' @param panel.last An `expression` to be evaluated after plotting has taken |
|
1271 |
#' place but before the axes, title and box are added. |
|
1272 |
#' @param legend A [`list`] of additional arguments to be passed to |
|
1273 |
#' [graphics::legend()]; names of the list are used as argument names. |
|
1274 |
#' If `NULL`, no legend is displayed. |
|
1275 |
#' @param ... Further [graphical parameters][graphics::par] to be passed to |
|
1276 |
#' [graphics::lines()]. |
|
1277 |
#' @return |
|
1278 |
#' `plot()` is called for its side-effects: it results in a graphic being |
|
1279 |
#' displayed (invisibly returns `x`). |
|
1280 |
#' @example inst/examples/ex-rarefaction.R |
|
1281 |
#' @author N. Frerebeau |
|
1282 |
#' @family diversity measures |
|
1283 |
#' @docType methods |
|
1284 |
#' @name plot_rarefaction |
|
1285 |
#' @rdname plot_rarefaction |
|
1286 |
NULL |
|
1287 | ||
1288 |
#' SHE Analysis |
|
1289 |
#' |
|
1290 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
1291 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
1292 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
1293 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
1294 |
#' @param unbiased A [`logical`] scalar: should the bias-corrected estimator be |
|
1295 |
#' used (see [index_shannon()])? |
|
1296 |
#' @param xlab,ylab A [`character`] vector giving the x and y axis labels. |
|
1297 |
#' @param main A [`character`] string giving a main title for the plot. |
|
1298 |
#' @param sub A [`character`] string giving a subtitle for the plot. |
|
1299 |
#' @param ann A [`logical`] scalar: should the default annotation (title and x, |
|
1300 |
#' y and z axis labels) appear on the plot? |
|
1301 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? |
|
1302 |
#' @param frame.plot A [`logical`] scalar: should a box be drawn around the |
|
1303 |
#' plot? |
|
1304 |
#' @param panel.first An an `expression` to be evaluated after the plot axes are |
|
1305 |
#' set up but before any plotting takes place. This can be useful for drawing |
|
1306 |
#' background grids. |
|
1307 |
#' @param panel.last An `expression` to be evaluated after plotting has taken |
|
1308 |
#' place but before the axes, title and box are added. |
|
1309 |
#' @param legend A [`list`] of additional arguments to be passed to |
|
1310 |
#' [graphics::legend()]; names of the list are used as argument names. |
|
1311 |
#' If `NULL`, no legend is displayed. |
|
1312 |
#' @param ... Further [graphical parameters][graphics::par] to be passed to |
|
1313 |
#' [graphics::lines()] and [graphics::points()]. |
|
1314 |
#' @return |
|
1315 |
#' `she()` is called for its side-effects: it results in a graphic being |
|
1316 |
#' displayed (invisibly returns `object`). |
|
1317 |
#' @details |
|
1318 |
#' If samples are taken along a gradient or stratigraphic section, breaks in |
|
1319 |
#' the curve may be used to infer discontinuities. |
|
1320 |
#' |
|
1321 |
#' This assumes that the order of the matrix rows (from \eqn{1} to \eqn{n}) |
|
1322 |
#' follows the progression along the gradient/transect. |
|
1323 |
#' @references |
|
1324 |
#' Buzas, M. A. & Hayek, L.-A. C. (1998). SHE analysis for biofacies |
|
1325 |
#' identification. *Journal of Foraminiferal Research*, 1998, 28(3), 233-239. |
|
1326 |
#' |
|
1327 |
#' Hayek, L.-A. C. & Buzas, M. A. (2010). *Surveying Natural Populations: |
|
1328 |
#' Quantitative Tools for Assessing Biodiversity*. Second edition. |
|
1329 |
#' New York: Columbia University Press. |
|
1330 |
#' @example inst/examples/ex-she.R |
|
1331 |
#' @author N. Frerebeau |
|
1332 |
#' @family diversity measures |
|
1333 |
#' @docType methods |
|
1334 |
#' @aliases she-method |
|
1335 |
setGeneric( |
|
1336 |
name = "she", |
|
1337 | 2x |
def = function(object, ...) standardGeneric("she") |
1338 |
) |
|
1339 | ||
1340 |
#' Diversity Profiles |
|
1341 |
#' |
|
1342 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
1343 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
1344 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
1345 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
1346 |
#' @param alpha A [`numeric`] vector giving the values of the alpha parameter. |
|
1347 |
#' @param color A vector of colors (will be mapped to the rownames of `object`). |
|
1348 |
#' If `color` is a named a named vector, then the colors will be associated |
|
1349 |
#' with the rownames of `object`. Ignored if set to `FALSE`. |
|
1350 |
#' @param symbol A specification for the line type (will be mapped to |
|
1351 |
#' the rownames of `object`). If `symbol` is a named a named vector, then the |
|
1352 |
#' line types will be associated with the rownames of `object`. |
|
1353 |
#' Ignored if set to `FALSE`. |
|
1354 |
#' @param xlab,ylab A [`character`] vector giving the x and y axis labels. |
|
1355 |
#' @param main A [`character`] string giving a main title for the plot. |
|
1356 |
#' @param sub A [`character`] string giving a subtitle for the plot. |
|
1357 |
#' @param ann A [`logical`] scalar: should the default annotation (title and x, |
|
1358 |
#' y and z axis labels) appear on the plot? |
|
1359 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? |
|
1360 |
#' @param frame.plot A [`logical`] scalar: should a box be drawn around the |
|
1361 |
#' plot? |
|
1362 |
#' @param panel.first An an `expression` to be evaluated after the plot axes are |
|
1363 |
#' set up but before any plotting takes place. This can be useful for drawing |
|
1364 |
#' background grids. |
|
1365 |
#' @param panel.last An `expression` to be evaluated after plotting has taken |
|
1366 |
#' place but before the axes, title and box are added. |
|
1367 |
#' @param legend A [`list`] of additional arguments to be passed to |
|
1368 |
#' [graphics::legend()]; names of the list are used as argument names. |
|
1369 |
#' If `NULL`, no legend is displayed. |
|
1370 |
#' @param ... Further [graphical parameters][graphics::par] to be passed to |
|
1371 |
#' [graphics::lines()] |
|
1372 |
#' @details |
|
1373 |
#' If the profiles cross, the diversities are non-comparable across samples. |
|
1374 |
#' @return |
|
1375 |
#' `profiles()` is called for its side-effects: it results in a graphic being |
|
1376 |
#' displayed (invisibly returns `object`). |
|
1377 |
#' @references |
|
1378 |
#' Tóthmérész, B. (1995). Comparison of Different Methods for Diversity |
|
1379 |
#' Ordering. *Journal of Vegetation Science*, 6(2), 283-290. |
|
1380 |
#' \doi{10.2307/3236223}. |
|
1381 |
#' @example inst/examples/ex-profiles.R |
|
1382 |
#' @author N. Frerebeau |
|
1383 |
#' @family diversity measures |
|
1384 |
#' @docType methods |
|
1385 |
#' @aliases profiles-method |
|
1386 |
setGeneric( |
|
1387 |
name = "profiles", |
|
1388 | 2x |
def = function(object, ...) standardGeneric("profiles") |
1389 |
) |
|
1390 | ||
1391 |
## Matrix plot ----------------------------------------------------------------- |
|
1392 |
### Spot Plot ------------------------------------------------------------------ |
|
1393 |
#' Spot Plot |
|
1394 |
#' |
|
1395 |
#' Plots a spot matrix. |
|
1396 |
#' @inheritParams plot_matrix |
|
1397 |
#' @param type A [`character`] string specifying the graph to be plotted. |
|
1398 |
#' It must be one of "`ring`" (the default) or "`plain`". Any unambiguous |
|
1399 |
#' substring can be given. |
|
1400 |
#' @param ... Currently not used. |
|
1401 |
#' @details |
|
1402 |
#' The spot matrix can be considered as a variant of the |
|
1403 |
#' [Bertin diagram][plot_bertin()] where the data are first transformed to |
|
1404 |
#' relative frequencies. |
|
1405 |
#' @return |
|
1406 |
#' `plot_spot()` is called for its side-effects: it results in a graphic |
|
1407 |
#' being displayed (invisibly returns `object`). |
|
1408 |
#' @note |
|
1409 |
#' Adapted from Dan Gopstein's original |
|
1410 |
#' [idea](https://dan.gop/articles/spot-matrix/). |
|
1411 |
#' @example inst/examples/ex-plot_spot.R |
|
1412 |
#' @author N. Frerebeau |
|
1413 |
#' @family plot methods |
|
1414 |
#' @docType methods |
|
1415 |
#' @aliases plot_spot-method |
|
1416 |
setGeneric( |
|
1417 |
name = "plot_spot", |
|
1418 | 14x |
def = function(object, ...) standardGeneric("plot_spot") |
1419 |
) |
|
1420 | ||
1421 |
### Heatmap -------------------------------------------------------------------- |
|
1422 |
#' Heatmap |
|
1423 |
#' |
|
1424 |
#' Plots a heatmap. |
|
1425 |
#' @inheritParams plot_matrix |
|
1426 |
#' @param fixed_ratio A [`logical`] scalar: should a fixed aspect ratio (1) be |
|
1427 |
#' used? |
|
1428 |
#' @param ... Currently not used. |
|
1429 |
#' @return |
|
1430 |
#' `plot_heatmap()` is called for its side-effects: it results in a graphic |
|
1431 |
#' being displayed (invisibly returns `object`). |
|
1432 |
#' @example inst/examples/ex-plot_heatmap.R |
|
1433 |
#' @author N. Frerebeau |
|
1434 |
#' @family plot methods |
|
1435 |
#' @docType methods |
|
1436 |
#' @aliases plot_heatmap-method |
|
1437 |
setGeneric( |
|
1438 |
name = "plot_heatmap", |
|
1439 | 13x |
def = function(object, ...) standardGeneric("plot_heatmap") |
1440 |
) |
|
1441 | ||
1442 |
### Matrigraph ----------------------------------------------------------------- |
|
1443 |
#' Matrigraph |
|
1444 |
#' |
|
1445 |
#' @description |
|
1446 |
#' * `matrigraph()` produces a heatmap highlighting the deviations from |
|
1447 |
#' independence. |
|
1448 |
#' * `pvi()` computes for each cell of a numeric matrix the percentage to the |
|
1449 |
#' column theoretical independence value. |
|
1450 |
#' @inheritParams plot_matrix |
|
1451 |
#' @param reverse A [`logical`] scalar: should negative deviations be centered |
|
1452 |
#' (see details)? |
|
1453 |
#' @param ... Currently not used. |
|
1454 |
#' @details |
|
1455 |
#' PVI (in french "pourcentages de valeur d'indépendance") is calculated for |
|
1456 |
#' each cell as the percentage to the column theoretical independence value: |
|
1457 |
#' PVI greater than \eqn{1} represent positive deviations from the |
|
1458 |
#' independence, whereas PVI smaller than \eqn{1} represent negative |
|
1459 |
#' deviations (Desachy 2004). |
|
1460 |
#' |
|
1461 |
#' The PVI matrix allows to explore deviations from independence (an |
|
1462 |
#' intuitive approach to \eqn{\chi^2}{Chi-squared}), in such a way that a |
|
1463 |
#' high-contrast matrix has quite significant deviations, |
|
1464 |
#' with a low risk of being due to randomness (Desachy 2004). |
|
1465 |
#' |
|
1466 |
#' `matrigraph()` displays the deviations from independence: |
|
1467 |
#' |
|
1468 |
#' * If the PVI is equal to \eqn{1} (statistical independence), the cell of the |
|
1469 |
#' matrix is filled in grey. |
|
1470 |
#' * If the PVI is less than \eqn{1} (negative deviation from independence), |
|
1471 |
#' the size of the grey square is proportional to the PVI (the white margin |
|
1472 |
#' thus represents the fraction of negative deviation). |
|
1473 |
#' * If the PVI is greater than \eqn{1} (positive deviation), a black |
|
1474 |
#' square representing the fraction of positive deviations is |
|
1475 |
#' superimposed. For large positive deviations (PVI greater than \eqn{2}), |
|
1476 |
#' the cell in filled in black. |
|
1477 |
#' |
|
1478 |
#' If `reverse` is `TRUE`, the fraction of negative deviations is displayed |
|
1479 |
#' as a white square. |
|
1480 |
#' @references |
|
1481 |
#' Desachy, B. (2004). Le sériographe EPPM: un outil informatisé de sériation |
|
1482 |
#' graphique pour tableaux de comptages. *Revue archéologique de Picardie*, |
|
1483 |
#' 3(1), 39-56. \doi{10.3406/pica.2004.2396}. |
|
1484 |
#' @return |
|
1485 |
#' * `matrigraph()` is called for its side-effects: it results in a graphic |
|
1486 |
#' being displayed (invisibly returns `object`). |
|
1487 |
#' * `pvi()` returns a [`numeric`] [`matrix`]. |
|
1488 |
#' @example inst/examples/ex-matrigraph.R |
|
1489 |
#' @author N. Frerebeau |
|
1490 |
#' @seealso [plot_heatmap()] |
|
1491 |
#' @family plot methods |
|
1492 |
#' @docType methods |
|
1493 |
#' @aliases matrigraph-method |
|
1494 |
setGeneric( |
|
1495 |
name = "matrigraph", |
|
1496 | 4x |
def = function(object, ...) standardGeneric("matrigraph") |
1497 |
) |
|
1498 | ||
1499 |
#' @rdname matrigraph |
|
1500 |
#' @aliases pvi-method |
|
1501 |
setGeneric( |
|
1502 |
name = "pvi", |
|
1503 | 4x |
def = function(object, ...) standardGeneric("pvi") |
1504 |
) |
|
1505 | ||
1506 |
## Bar Plot -------------------------------------------------------------------- |
|
1507 |
### Bertin --------------------------------------------------------------------- |
|
1508 |
#' Bertin Diagram |
|
1509 |
#' |
|
1510 |
#' Plots a Bertin diagram. |
|
1511 |
#' @inheritParams plot_matrix |
|
1512 |
#' @param threshold A [`function`] that takes a numeric vector as argument and |
|
1513 |
#' returns a numeric threshold value (see below). If `NULL` (the default), no |
|
1514 |
#' threshold is computed. Only used if `freq` is `FALSE`. |
|
1515 |
#' @param flip A [`logical`] scalar: should `x` and `y` axis be flipped? |
|
1516 |
#' Defaults to `TRUE`. |
|
1517 |
#' @param ... Currently not used. |
|
1518 |
#' @section Bertin Matrix: |
|
1519 |
#' As de Falguerolles *et al.* (1997) points out: |
|
1520 |
#' "In abstract terms, a Bertin matrix is a matrix of displays. [...] To fix |
|
1521 |
#' ideas, think of a data matrix, variable by case, with real valued variables. |
|
1522 |
#' For each variable, draw a bar chart of variable value by case. High-light |
|
1523 |
#' all bars representing a value above some sample threshold for that |
|
1524 |
#' variable." |
|
1525 |
#' @return |
|
1526 |
#' `plot_bertin()` is called for its side-effects: it results in a graphic |
|
1527 |
#' being displayed (invisibly returns `object`). |
|
1528 |
#' @references |
|
1529 |
#' Bertin, J. (1977). *La graphique et le traitement graphique de |
|
1530 |
#' l'information*. Paris: Flammarion. Nouvelle Bibliothèque Scientifique. |
|
1531 |
#' |
|
1532 |
#' de Falguerolles, A., Friedrich, F. & Sawitzki, G. (1997). A Tribute to J. |
|
1533 |
#' Bertin's Graphical Data Analysis. In W. Badilla & F. Faulbaum (eds.), |
|
1534 |
#' *SoftStat '97: Advances in Statistical Software 6*. Stuttgart: Lucius |
|
1535 |
#' & Lucius, p. 11-20. |
|
1536 |
#' @example inst/examples/ex-plot_bertin.R |
|
1537 |
#' @author N. Frerebeau |
|
1538 |
#' @family plot methods |
|
1539 |
#' @docType methods |
|
1540 |
#' @aliases plot_bertin-method Bertin |
|
1541 |
setGeneric( |
|
1542 |
name = "plot_bertin", |
|
1543 | 10x |
def = function(object, ...) standardGeneric("plot_bertin") |
1544 |
) |
|
1545 | ||
1546 |
### Ford ----------------------------------------------------------------------- |
|
1547 |
#' Ford Diagram |
|
1548 |
#' |
|
1549 |
#' Plots a Ford (battleship curve) diagram. |
|
1550 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
1551 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
1552 |
#' individuals for each category, i.e. a contingency table). |
|
1553 |
#' @param weights A [`logical`] scalar: should the row sums be displayed? |
|
1554 |
#' @param EPPM A [`logical`] scalar: should the EPPM be drawn? |
|
1555 |
#' See `seriograph()`. |
|
1556 |
#' @param fill The color for filling the bars. |
|
1557 |
#' @param border The color to draw the borders. |
|
1558 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? It will |
|
1559 |
#' omit labels where they would abut or overlap previously drawn labels. |
|
1560 |
#' @param ... Currently not used. |
|
1561 |
#' @return |
|
1562 |
#' `plot_ford()` is called for its side-effects: it results in a graphic |
|
1563 |
#' being displayed (invisibly returns `object`). |
|
1564 |
#' @references |
|
1565 |
#' Ford, J. A. (1962). *A quantitative method for deriving cultural |
|
1566 |
#' chronology*. Washington, DC: Pan American Union. Technical manual 1. |
|
1567 |
#' @example inst/examples/ex-plot_ford.R |
|
1568 |
#' @author N. Frerebeau |
|
1569 |
#' @family plot methods |
|
1570 |
#' @docType methods |
|
1571 |
#' @aliases plot_ford-method Ford |
|
1572 |
setGeneric( |
|
1573 |
name = "plot_ford", |
|
1574 | 5x |
def = function(object, ...) standardGeneric("plot_ford") |
1575 |
) |
|
1576 | ||
1577 |
### Seriograph ----------------------------------------------------------------- |
|
1578 |
#' Seriograph |
|
1579 |
#' |
|
1580 |
#' @description |
|
1581 |
#' * `seriograph()` produces a Ford diagram highlighting the relationships |
|
1582 |
#' between rows and columns. |
|
1583 |
#' * `eppm()` computes for each cell of a numeric matrix the positive |
|
1584 |
#' difference from the column mean percentage. |
|
1585 |
#' @inheritParams plot_ford |
|
1586 |
#' @details |
|
1587 |
#' The positive difference from the column mean percentage (in french "écart |
|
1588 |
#' positif au pourcentage moyen", EPPM) represents a deviation from the |
|
1589 |
#' situation of statistical independence. As independence can be interpreted as |
|
1590 |
#' the absence of relationships between types and the chronological order of |
|
1591 |
#' the assemblages, EPPM is a useful tool to explore significance |
|
1592 |
#' of relationship between rows and columns related to seriation (Desachy |
|
1593 |
#' 2004). |
|
1594 |
#' |
|
1595 |
#' `seriograph()` superimposes the frequencies (grey) and EPPM values (black) |
|
1596 |
#' for each row-column pair in a Ford diagram. |
|
1597 |
#' @references |
|
1598 |
#' Desachy, B. (2004). Le sériographe EPPM: un outil informatisé de sériation |
|
1599 |
#' graphique pour tableaux de comptages. *Revue archéologique de Picardie*, |
|
1600 |
#' 3(1), 39-56. \doi{10.3406/pica.2004.2396}. |
|
1601 |
#' @return |
|
1602 |
#' * `seriograph()` is called for its side-effects: it results in a graphic |
|
1603 |
#' being displayed (invisibly returns `object`). |
|
1604 |
#' * `eppm()` returns a [`numeric`] [`matrix`]. |
|
1605 |
#' @example inst/examples/ex-seriograph.R |
|
1606 |
#' @author N. Frerebeau |
|
1607 |
#' @seealso [plot_ford()] |
|
1608 |
#' @family plot methods |
|
1609 |
#' @docType methods |
|
1610 |
#' @aliases seriograph-method |
|
1611 |
setGeneric( |
|
1612 |
name = "seriograph", |
|
1613 | 2x |
def = function(object, ...) standardGeneric("seriograph") |
1614 |
) |
|
1615 | ||
1616 |
#' @rdname seriograph |
|
1617 |
#' @aliases eppm-method |
|
1618 |
setGeneric( |
|
1619 |
name = "eppm", |
|
1620 | 5x |
def = function(object, ...) standardGeneric("eppm") |
1621 |
) |
|
1622 | ||
1623 |
### Dice-Leraas ---------------------------------------------------------------- |
|
1624 |
#' Dice-Leraas Diagram |
|
1625 |
#' |
|
1626 |
#' Plots a Dice-Leraas diagram. |
|
1627 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
1628 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
1629 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
1630 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
1631 |
#' @param main A [`character`] string giving a main title for the plot. |
|
1632 |
#' @param sub A [`character`] string giving a subtitle for the plot. |
|
1633 |
#' @param ann A [`logical`] scalar: should the default annotation (title and x, |
|
1634 |
#' y and z axis labels) appear on the plot? |
|
1635 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? |
|
1636 |
#' @param frame.plot A [`logical`] scalar: should a box be drawn around the |
|
1637 |
#' plot? |
|
1638 |
#' @param panel.first An an `expression` to be evaluated after the plot axes are |
|
1639 |
#' set up but before any plotting takes place. This can be useful for drawing |
|
1640 |
#' background grids. |
|
1641 |
#' @param panel.last An `expression` to be evaluated after plotting has taken |
|
1642 |
#' place but before the axes, title and box are added. |
|
1643 |
#' @param ... Further [graphical parameters][graphics::par]. |
|
1644 |
#' @details |
|
1645 |
#' In a Dice-Leraas diagram, the horizontal line represents the range of data |
|
1646 |
#' (min-max) and the small vertical line indicates the mean. The black |
|
1647 |
#' rectangle is twice the standard error on the mean, while the white rectangle |
|
1648 |
#' is one standard deviation on either side of the mean. |
|
1649 |
#' @references |
|
1650 |
#' Dice, L. R., & Leraas, H. J. (1936). A Graphic Method for Comparing Several |
|
1651 |
#' Sets of Measurements. *Contributions from the Laboratory of Vertebrate |
|
1652 |
#' Genetics*, 3: 1-3. |
|
1653 |
#' |
|
1654 |
#' Hubbs, C. L., & C. Hubbs (1953). An Improved Graphical Analysis and |
|
1655 |
#' Comparison of Series of Samples. *Systematic Biology*, 2(2): 49-56. |
|
1656 |
#' \doi{10.2307/sysbio/2.2.49}. |
|
1657 |
#' |
|
1658 |
#' Simpson, G. G., Roe, A., & Lewontin, R. C. *Quantitative Zoology*. |
|
1659 |
#' New York: Harcourt, Brace and Company, 1960. |
|
1660 |
#' @return |
|
1661 |
#' `plot_diceleraas()` is called for its side-effects: it results in a |
|
1662 |
#' graphic being displayed (invisibly returns `object`). |
|
1663 |
#' @example inst/examples/ex-diceleraas.R |
|
1664 |
#' @author N. Frerebeau |
|
1665 |
#' @family plot methods |
|
1666 |
#' @docType methods |
|
1667 |
#' @aliases plot_diceleraas-method |
|
1668 |
setGeneric( |
|
1669 |
name = "plot_diceleraas", |
|
1670 | 2x |
def = function(object, ...) standardGeneric("plot_diceleraas") |
1671 |
) |
|
1672 | ||
1673 |
## Line Plot ------------------------------------------------------------------- |
|
1674 |
#' Rank Plot |
|
1675 |
#' |
|
1676 |
#' Plots a rank *vs* relative abundance diagram. |
|
1677 |
#' @param object A \eqn{m \times p}{m x p} `numeric` [`matrix`] or |
|
1678 |
#' [`data.frame`] of count data (absolute frequencies giving the number of |
|
1679 |
#' individuals for each category, i.e. a contingency table). A [`data.frame`] |
|
1680 |
#' will be coerced to a `numeric` `matrix` via [data.matrix()]. |
|
1681 |
#' @param color A vector of colors (will be mapped to the rownames of `object`). |
|
1682 |
#' If `color` is a named a named vector, then the colors will be associated |
|
1683 |
#' with the rownames of `object`. Ignored if set to `FALSE`. |
|
1684 |
#' @param symbol A specification for the line type (will be mapped to |
|
1685 |
#' the rownames of `object`). If `symbol` is a named a named vector, then the |
|
1686 |
#' line types will be associated with the rownames of `object`. |
|
1687 |
#' Ignored if set to `FALSE`. |
|
1688 |
#' @param log A [`character`] string which contains "`x`" if the x axis is to be |
|
1689 |
#' logarithmic, "`y`" if the y axis is to be logarithmic and "`xy`" or "`yx`" |
|
1690 |
#' if both axes are to be logarithmic (base 10). |
|
1691 |
# @param facet A [`logical`] scalar: should a matrix of panels defined by |
|
1692 |
# case/sample be drawn? |
|
1693 |
#' @param xlab,ylab A [`character`] vector giving the x and y axis labels. |
|
1694 |
#' @param main A [`character`] string giving a main title for the plot. |
|
1695 |
#' @param sub A [`character`] string giving a subtitle for the plot. |
|
1696 |
#' @param ann A [`logical`] scalar: should the default annotation (title and x, |
|
1697 |
#' y and z axis labels) appear on the plot? |
|
1698 |
#' @param axes A [`logical`] scalar: should axes be drawn on the plot? |
|
1699 |
#' @param frame.plot A [`logical`] scalar: should a box be drawn around the |
|
1700 |
#' plot? |
|
1701 |
#' @param panel.first An an `expression` to be evaluated after the plot axes are |
|
1702 |
#' set up but before any plotting takes place. This can be useful for drawing |
|
1703 |
#' background grids. |
|
1704 |
#' @param panel.last An `expression` to be evaluated after plotting has taken |
|
1705 |
#' place but before the axes, title and box are added. |
|
1706 |
#' @param legend A [`list`] of additional arguments to be passed to |
|
1707 |
#' [graphics::legend()]; names of the list are used as argument names. |
|
1708 |
#' If `NULL`, no legend is displayed. |
|
1709 |
#' @param ... Further [graphical parameters][graphics::par]. |
|
1710 |
#' @return |
|
1711 |
#' `plot_rank()` is called for its side-effects: it results in a graphic |
|
1712 |
#' being displayed (invisibly returns `object`). |
|
1713 |
#' @references |
|
1714 |
#' Magurran, A. E. (1988). *Ecological Diversity and its Measurement*. |
|
1715 |
#' Princeton, NJ: Princeton University Press. \doi{10.1007/978-94-015-7358-0}. |
|
1716 |
#' @example inst/examples/ex-plot_rank.R |
|
1717 |
#' @author N. Frerebeau |
|
1718 |
#' @family plot methods |
|
1719 |
#' @docType methods |
|
1720 |
#' @aliases plot_rank-method |
|
1721 |
setGeneric( |
|
1722 |
name = "plot_rank", |
|
1723 | 4x |
def = function(object, ...) standardGeneric("plot_rank") |
1724 |
) |
1 |
# SIMILARITY |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
# Similarity =================================================================== |
|
6 |
#' @export |
|
7 |
#' @rdname similarity |
|
8 |
#' @aliases similarity,matrix-method |
|
9 |
setMethod( |
|
10 |
f = "similarity", |
|
11 |
signature = c(object = "matrix"), |
|
12 |
definition = function(object, method = c("brainerd", "bray", "jaccard", |
|
13 |
"morisita", "sorenson")) { |
|
14 |
## Validation |
|
15 | 1x |
if (any(method == "binomial")) { |
16 | ! |
stop("Use occurrence(x, method = \"bionomial\") instead.", call. = FALSE) |
17 |
} |
|
18 | 1x |
method <- match.arg(method, several.ok = FALSE) |
19 |
## Select method |
|
20 | 1x |
fun <- get_index(method) |
21 | ||
22 |
## Pairwise comparison |
|
23 |
## Sample/case comparisons |
|
24 | 1x |
m <- nrow(object) |
25 | 1x |
labels <- rownames(object) |
26 | 1x |
beta <- function(x, f) f(object[x[1], ], object[x[2], ]) |
27 | ||
28 | 1x |
cbn <- utils::combn(seq_len(m), m = 2, simplify = TRUE) |
29 | 1x |
index <- apply(X = cbn, MARGIN = 2, FUN = beta, f = fun) |
30 | ||
31 |
## Matrix of results |
|
32 | 1x |
diag_value <- ifelse(method == "brainerd", 200, 1) |
33 | 1x |
mtx <- matrix(data = diag_value, nrow = m, ncol = m, |
34 | 1x |
dimnames = list(labels, labels)) |
35 | 1x |
mtx[lower.tri(mtx, diag = FALSE)] <- index |
36 | 1x |
mtx <- t(mtx) |
37 | 1x |
mtx[lower.tri(mtx, diag = FALSE)] <- index |
38 | ||
39 | 1x |
sim <- stats::as.dist(mtx) |
40 | 1x |
attr(sim, "method") <- method |
41 | 1x |
sim |
42 |
} |
|
43 |
) |
|
44 | ||
45 |
#' @export |
|
46 |
#' @rdname similarity |
|
47 |
#' @aliases similarity,data.frame-method |
|
48 |
setMethod( |
|
49 |
f = "similarity", |
|
50 |
signature = c(object = "data.frame"), |
|
51 |
definition = function(object, method = c("brainerd", "bray", "jaccard", |
|
52 |
"morisita", "sorenson")) { |
|
53 | 1x |
object <- data.matrix(object) |
54 | 1x |
methods::callGeneric(object, method = method) |
55 |
} |
|
56 |
) |
|
57 | ||
58 |
# Index ======================================================================== |
|
59 |
## Qualitative index ----------------------------------------------------------- |
|
60 |
#' @export |
|
61 |
#' @rdname index_jaccard |
|
62 |
#' @aliases index_jaccard,character,character-method |
|
63 |
setMethod( |
|
64 |
f = "index_jaccard", |
|
65 |
signature = c(x = "character", y = "character"), |
|
66 |
definition = function(x, y) { |
|
67 | 1x |
inter <- length(intersect(x, y)) |
68 | 1x |
union <- length(x) + length(y) - inter |
69 | 1x |
inter / union |
70 |
} |
|
71 |
) |
|
72 | ||
73 |
#' @export |
|
74 |
#' @rdname index_jaccard |
|
75 |
#' @aliases index_jaccard,logical,logical-method |
|
76 |
setMethod( |
|
77 |
f = "index_jaccard", |
|
78 |
signature = c(x = "logical", y = "logical"), |
|
79 |
definition = function(x, y) { |
|
80 |
## Validation |
|
81 | 1x |
arkhe::assert_length(y, length(x)) |
82 | ||
83 | 1x |
a <- sum(x) |
84 | 1x |
b <- sum(y) |
85 | 1x |
j <- sum((x + y) == 2) |
86 | 1x |
Cj <- j / (a + b - j) |
87 | 1x |
Cj |
88 |
} |
|
89 |
) |
|
90 | ||
91 |
#' @export |
|
92 |
#' @rdname index_jaccard |
|
93 |
#' @aliases index_jaccard,numeric,numeric-method |
|
94 |
setMethod( |
|
95 |
f = "index_jaccard", |
|
96 |
signature = c(x = "numeric", y = "numeric"), |
|
97 |
definition = function(x, y) { |
|
98 |
## presence/absence |
|
99 | 1x |
x <- x > 0 |
100 | 1x |
y <- y > 0 |
101 | 1x |
methods::callGeneric(x, y) |
102 |
} |
|
103 |
) |
|
104 | ||
105 |
#' @export |
|
106 |
#' @rdname index_sorenson |
|
107 |
#' @aliases index_sorenson,logical,logical-method |
|
108 |
setMethod( |
|
109 |
f = "index_sorenson", |
|
110 |
signature = c(x = "logical", y = "logical"), |
|
111 |
definition = function(x, y) { |
|
112 |
## Validation |
|
113 | 1x |
arkhe::assert_length(y, length(x)) |
114 | ||
115 | 1x |
a <- sum(x) |
116 | 1x |
b <- sum(y) |
117 | 1x |
j <- sum((x + y) == 2) |
118 | 1x |
Cs <- 2 * j / (a + b) |
119 | 1x |
Cs |
120 |
} |
|
121 |
) |
|
122 | ||
123 |
#' @export |
|
124 |
#' @rdname index_sorenson |
|
125 |
#' @aliases index_sorenson,numeric,numeric-method |
|
126 |
setMethod( |
|
127 |
f = "index_sorenson", |
|
128 |
signature = c(x = "numeric", y = "numeric"), |
|
129 |
definition = function(x, y) { |
|
130 |
## presence/absence |
|
131 | 1x |
x <- x > 0 |
132 | 1x |
y <- y > 0 |
133 | 1x |
methods::callGeneric(x, y) |
134 |
} |
|
135 |
) |
|
136 | ||
137 |
## Quantitative index ---------------------------------------------------------- |
|
138 |
#' @export |
|
139 |
#' @rdname index_brainerd |
|
140 |
#' @aliases index_brainerd,numeric,numeric-method |
|
141 |
setMethod( |
|
142 |
f = "index_brainerd", |
|
143 |
signature = c(x = "numeric", y = "numeric"), |
|
144 |
definition = function(x, y) { |
|
145 |
## Validation |
|
146 | 37x |
arkhe::assert_length(y, length(x)) |
147 | ||
148 | 37x |
a <- x / sum(x) |
149 | 37x |
b <- y / sum(y) |
150 | 37x |
Cb <- 2 - sum(abs(a - b)) |
151 | 37x |
Cb * 100 |
152 |
} |
|
153 |
) |
|
154 | ||
155 |
#' @export |
|
156 |
#' @rdname index_bray |
|
157 |
#' @aliases index_bray,numeric,numeric-method |
|
158 |
setMethod( |
|
159 |
f = "index_bray", |
|
160 |
signature = c(x = "numeric", y = "numeric"), |
|
161 |
definition = function(x, y) { |
|
162 |
## Validation |
|
163 | 1x |
arkhe::assert_length(y, length(x)) |
164 | ||
165 | 1x |
a <- sum(x) # Number of individuals in site A |
166 | 1x |
b <- sum(y) # Number of individuals in site B |
167 | ||
168 | 1x |
Cs <- 1 - sum(abs(y - x)) / sum(x + y) |
169 | 1x |
Cs |
170 |
} |
|
171 |
) |
|
172 | ||
173 |
#' @export |
|
174 |
#' @rdname index_morisita |
|
175 |
#' @aliases index_morisita,numeric,numeric-method |
|
176 |
setMethod( |
|
177 |
f = "index_morisita", |
|
178 |
signature = c(x = "numeric", y = "numeric"), |
|
179 |
definition = function(x, y) { |
|
180 |
## Validation |
|
181 | 1x |
arkhe::assert_length(y, length(x)) |
182 | ||
183 | 1x |
a <- sum(x) # Number of individuals in site A |
184 | 1x |
b <- sum(y) # Number of individuals in site B |
185 | 1x |
da <- sum(x^2) / a^2 |
186 | 1x |
db <- sum(y^2) / b^2 |
187 | ||
188 | 1x |
Cm <- (2 * sum(x * y)) / ((da + db) * a * b) |
189 | 1x |
Cm |
190 |
} |
|
191 |
) |
1 |
# DIVERSITY |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
# Index ======================================================================== |
|
6 |
index_observed <- function(x, ...) { |
|
7 | 159390x |
sum(x > 0, ...) # Number of observed species |
8 |
} |
|
9 |
get_index <- function(x) { |
|
10 | 319170x |
match.fun(sprintf("index_%s", x)) |
11 |
} |
|
12 |
do_index <- function(x, method, ...) { |
|
13 | 319140x |
f <- get_index(method) |
14 | 319140x |
f(x, ...) |
15 |
} |
|
16 | ||
17 |
#' Compute a Diversity Index |
|
18 |
#' |
|
19 |
#' @param x A [`numeric`] [`matrix`]. |
|
20 |
#' @param method A [`character`] string specifying the measure to be computed. |
|
21 |
#' @param by_row A [`logical`] scalar: should `method` be computed for each row? |
|
22 |
#' @param ... Further parameters to be passed to `method`. |
|
23 |
#' @return A [DiversityIndex-class] object. |
|
24 |
#' @author N. Frerebeau |
|
25 |
#' @keywords internal |
|
26 |
#' @noRd |
|
27 |
index_diversity <- function(x, method, ..., by_row = TRUE) { |
|
28 | 16x |
fun <- get_index(method) |
29 | 16x |
if (by_row) { |
30 | 14x |
idx <- apply(X = x, MARGIN = 1, FUN = fun, ...) |
31 |
} else { |
|
32 | 2x |
idx <- fun(x, ...) |
33 |
} |
|
34 | ||
35 |
## Fix names |
|
36 | 16x |
row_names <- rownames(x) %||% paste0("S", seq_along(idx)) |
37 | ||
38 | 16x |
.DiversityIndex( |
39 | 16x |
idx, |
40 | 16x |
labels = row_names, |
41 | 16x |
size = as.integer(rowSums(x)), |
42 | 16x |
data = x, |
43 | 16x |
method = method |
44 |
) |
|
45 |
} |
|
46 | ||
47 |
# Heterogeneity ================================================================ |
|
48 |
#' @export |
|
49 |
#' @rdname heterogeneity |
|
50 |
#' @aliases heterogeneity,matrix-method |
|
51 |
setMethod( |
|
52 |
f = "heterogeneity", |
|
53 |
signature = c(object = "matrix"), |
|
54 |
definition = function(object, ..., |
|
55 |
method = c("berger", "boone", "brillouin", |
|
56 |
"mcintosh", "shannon", "simpson")) { |
|
57 | 6x |
method <- match.arg(method, several.ok = FALSE) |
58 | 6x |
by_row <- method != "boone" |
59 | 6x |
index <- index_diversity(object, method, ..., evenness = FALSE, |
60 | 6x |
by_row = by_row) |
61 | 6x |
.HeterogeneityIndex(index) |
62 |
} |
|
63 |
) |
|
64 | ||
65 |
#' @export |
|
66 |
#' @rdname heterogeneity |
|
67 |
#' @aliases heterogeneity,data.frame-method |
|
68 |
setMethod( |
|
69 |
f = "heterogeneity", |
|
70 |
signature = c(object = "data.frame"), |
|
71 |
definition = function(object, ..., |
|
72 |
method = c("berger", "boone", "brillouin", |
|
73 |
"mcintosh", "shannon", "simpson")) { |
|
74 | 6x |
object <- data.matrix(object) |
75 | 6x |
methods::callGeneric(object, ..., method = method) |
76 |
} |
|
77 |
) |
|
78 | ||
79 |
# Evenness ===================================================================== |
|
80 |
#' @export |
|
81 |
#' @rdname heterogeneity |
|
82 |
#' @aliases evenness,matrix-method |
|
83 |
setMethod( |
|
84 |
f = "evenness", |
|
85 |
signature = c(object = "matrix"), |
|
86 |
definition = function(object, ..., |
|
87 |
method = c("shannon", "brillouin", |
|
88 |
"mcintosh", "simpson")) { |
|
89 | 4x |
method <- match.arg(method, several.ok = FALSE) |
90 | 4x |
index <- index_diversity(object, method, ..., evenness = TRUE) |
91 | 4x |
.EvennessIndex(index) |
92 |
} |
|
93 |
) |
|
94 | ||
95 |
#' @export |
|
96 |
#' @rdname heterogeneity |
|
97 |
#' @aliases evenness,data.frame-method |
|
98 |
setMethod( |
|
99 |
f = "evenness", |
|
100 |
signature = c(object = "data.frame"), |
|
101 |
definition = function(object, ..., |
|
102 |
method = c("shannon", "brillouin", |
|
103 |
"mcintosh", "simpson")) { |
|
104 | 4x |
object <- data.matrix(object) |
105 | 4x |
methods::callGeneric(object, ..., method = method) |
106 |
} |
|
107 |
) |
|
108 | ||
109 |
# Richness ===================================================================== |
|
110 |
#' @export |
|
111 |
#' @rdname richness |
|
112 |
#' @aliases richness,matrix-method |
|
113 |
setMethod( |
|
114 |
f = "richness", |
|
115 |
signature = c(object = "matrix"), |
|
116 |
definition = function(object, ..., method = c("observed", "margalef", "menhinick")) { |
|
117 |
## Backward compatibility |
|
118 | ! |
if (method == "count") method <- "observed" |
119 | ||
120 | 4x |
method <- match.arg(method, several.ok = FALSE) |
121 | 4x |
index <- index_diversity(object, method, ...) |
122 | 4x |
.RichnessIndex(index) |
123 |
} |
|
124 |
) |
|
125 | ||
126 |
#' @export |
|
127 |
#' @rdname richness |
|
128 |
#' @aliases richness,data.frame-method |
|
129 |
setMethod( |
|
130 |
f = "richness", |
|
131 |
signature = c(object = "data.frame"), |
|
132 |
definition = function(object, ..., method = c("observed", "margalef", "menhinick")) { |
|
133 | 4x |
object <- data.matrix(object) |
134 | 4x |
methods::callGeneric(object, ..., method = method) |
135 |
} |
|
136 |
) |
|
137 | ||
138 |
# Composition ================================================================== |
|
139 |
#' @export |
|
140 |
#' @rdname richness |
|
141 |
#' @aliases composition,matrix-method |
|
142 |
setMethod( |
|
143 |
f = "composition", |
|
144 |
signature = c(object = "matrix"), |
|
145 |
definition = function(object, ..., |
|
146 |
method = c("chao1", "ace", "squares", "chao2", "ice")) { |
|
147 | 2x |
method <- match.arg(method, several.ok = FALSE) |
148 | 2x |
by_row <- any(method == c("chao1", "ace", "squares")) |
149 | 2x |
index <- index_diversity(object, method, ..., by_row = by_row) |
150 | 2x |
.CompositionIndex(index) |
151 |
} |
|
152 |
) |
|
153 | ||
154 |
#' @export |
|
155 |
#' @rdname richness |
|
156 |
#' @aliases composition,data.frame-method |
|
157 |
setMethod( |
|
158 |
f = "composition", |
|
159 |
signature = c(object = "data.frame"), |
|
160 |
definition = function(object, ..., |
|
161 |
method = c("chao1", "ace", "squares", "chao2", "ice")) { |
|
162 | ! |
object <- data.matrix(object) |
163 | ! |
methods::callGeneric(object, ..., method = method) |
164 |
} |
|
165 |
) |
|
166 | ||
167 |
# Turnover ===================================================================== |
|
168 |
#' @export |
|
169 |
#' @rdname turnover |
|
170 |
#' @aliases turnover,matrix-method |
|
171 |
setMethod( |
|
172 |
f = "turnover", |
|
173 |
signature = c(object = "matrix"), |
|
174 |
definition = function(object, ..., |
|
175 |
method = c("whittaker", "cody", "routledge1", |
|
176 |
"routledge2", "routledge3", "wilson")) { |
|
177 | 6x |
method <- match.arg(method, several.ok = FALSE) |
178 | 6x |
fun <- get_index(method) |
179 | 6x |
fun(object) |
180 |
} |
|
181 |
) |
|
182 | ||
183 |
#' @export |
|
184 |
#' @rdname turnover |
|
185 |
#' @aliases turnover,data.frame-method |
|
186 |
setMethod( |
|
187 |
f = "turnover", |
|
188 |
signature = c(object = "data.frame"), |
|
189 |
definition = function(object, ..., |
|
190 |
method = c("whittaker", "cody", "routledge1", |
|
191 |
"routledge2", "routledge3", "wilson")) { |
|
192 | ! |
object <- data.matrix(object) |
193 | ! |
methods::callGeneric(object, ..., method = method) |
194 |
} |
|
195 |
) |
|
196 | ||
197 |
# Resample ===================================================================== |
|
198 |
## Bootstrap ------------------------------------------------------------------- |
|
199 |
#' @export |
|
200 |
#' @rdname bootstrap |
|
201 |
#' @aliases bootstrap,DiversityIndex-method |
|
202 |
setMethod( |
|
203 |
f = "bootstrap", |
|
204 |
signature = c(object = "DiversityIndex"), |
|
205 |
definition = function(object, n = 1000, f = NULL) { |
|
206 | ||
207 | 3x |
w <- object@data |
208 | 3x |
m <- nrow(w) |
209 | 3x |
method <- object@method |
210 | ||
211 | 3x |
results <- vector(mode = "list", length = m) |
212 | 3x |
for (i in seq_len(m)) { |
213 | 15x |
results[[i]] <- arkhe::bootstrap( |
214 | 15x |
object = w[i, ], |
215 | 15x |
do = do_index, |
216 | 15x |
n = n, |
217 | 15x |
method = method, |
218 | 15x |
evenness = methods::is(object, "EvennessIndex"), |
219 | 15x |
f = f |
220 |
) |
|
221 |
} |
|
222 | 3x |
results <- do.call(rbind, results) |
223 | 3x |
rownames(results) <- rownames(w) |
224 | 3x |
as.data.frame(results) |
225 |
} |
|
226 |
) |
|
227 | ||
228 |
## Jackknife ------------------------------------------------------------------- |
|
229 |
#' @export |
|
230 |
#' @rdname jackknife |
|
231 |
#' @aliases jackknife,DiversityIndex-method |
|
232 |
setMethod( |
|
233 |
f = "jackknife", |
|
234 |
signature = c(object = "DiversityIndex"), |
|
235 |
definition = function(object, f = NULL) { |
|
236 | ||
237 | 3x |
w <- object@data |
238 | 3x |
m <- nrow(w) |
239 | 3x |
method <- object@method |
240 | ||
241 | 3x |
results <- vector(mode = "list", length = m) |
242 | 3x |
for (i in seq_len(m)) { |
243 | 15x |
results[[i]] <- arkhe::jackknife( |
244 | 15x |
object = w[i, ], |
245 | 15x |
do = do_index, |
246 | 15x |
method = method, |
247 | 15x |
evenness = methods::is(object, "EvennessIndex"), |
248 | 15x |
f = f |
249 |
) |
|
250 |
} |
|
251 | 3x |
results <- do.call(rbind, results) |
252 | 3x |
rownames(results) <- rownames(w) |
253 | 3x |
as.data.frame(results) |
254 |
} |
|
255 |
) |
|
256 | ||
257 |
## Simulate -------------------------------------------------------------------- |
|
258 |
#' @export |
|
259 |
#' @rdname simulate |
|
260 |
#' @aliases simulate,DiversityIndex-method |
|
261 |
setMethod( |
|
262 |
f = "simulate", |
|
263 |
signature = c(object = "DiversityIndex"), |
|
264 |
definition = function(object, n = 1000, step = 1, |
|
265 |
interval = c("percentiles", "student", "normal"), |
|
266 |
level = 0.80, progress = getOption("tabula.progress")) { |
|
267 |
## Simulate |
|
268 |
## Specify the probability for the classes |
|
269 | 2x |
data <- object@data |
270 | 2x |
method <- object@method # Select method |
271 | ||
272 |
## Sample size |
|
273 | 2x |
size <- max(rowSums(data)) |
274 | 2x |
sample_sizes <- seq(from = 1, to = size * 1.05, by = step) |
275 | ||
276 | 2x |
m <- length(sample_sizes) |
277 | 2x |
k <- seq_len(m) |
278 | ||
279 | 2x |
simulated <- vector(mode = "list", length = m) |
280 | 2x |
fun <- function(x) conf(x, level = level, type = interval) |
281 | ||
282 | 2x |
progress_bar <- interactive() && progress |
283 | ! |
if (progress_bar) pbar <- utils::txtProgressBar(max = m, style = 3) |
284 | ||
285 | 2x |
for (i in k) { |
286 | 318x |
simulated[[i]] <- resample( |
287 | 318x |
object = colSums(data), |
288 | 318x |
do = do_index, |
289 | 318x |
method = method, |
290 | 318x |
evenness = methods::is(object, "EvennessIndex"), |
291 | 318x |
n = n, |
292 | 318x |
size = sample_sizes[[i]], |
293 | 318x |
f = fun |
294 |
) |
|
295 | ! |
if (progress_bar) utils::setTxtProgressBar(pbar, i) |
296 |
} |
|
297 | ||
298 | ! |
if (progress_bar) close(pbar) |
299 | ||
300 | 2x |
simulated <- do.call(rbind, simulated) |
301 | 2x |
simulated <- cbind(size = sample_sizes, simulated) |
302 | ||
303 | 2x |
methods::initialize(object, simulation = simulated) |
304 |
} |
|
305 |
) |
|
306 | ||
307 |
conf <- function(x, type = c("percentiles", "student", "normal"), |
|
308 |
level = 0.80) { |
|
309 | ||
310 | 318x |
type <- match.arg(type, several.ok = FALSE) |
311 | ||
312 | 318x |
if (type == "percentiles") { |
313 |
## Confidence interval as described in Kintigh 1989 |
|
314 | 318x |
k <- (1 - level) / 2 |
315 | 318x |
conf <- stats::quantile(x, probs = c(k, 1 - k), names = FALSE) |
316 |
} else { |
|
317 |
## Confidence interval |
|
318 | ! |
conf <- arkhe::confidence_mean(x, level = level, type = type) |
319 |
} |
|
320 | ||
321 | 318x |
result <- c(mean(x), conf) |
322 | 318x |
names(result) <- c("mean", "lower", "upper") |
323 | 318x |
result |
324 |
} |
1 |
# PLOT BERTIN |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname plot_bertin |
|
7 |
#' @aliases plot_bertin,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "plot_bertin", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object, threshold = NULL, freq = FALSE, margin = 1, |
|
12 |
color = c("white", "black"), flip = TRUE, |
|
13 |
axes = TRUE, ...) { |
|
14 |
## Conditional proportions |
|
15 | 2x |
if (freq) object <- prop.table(object, margin = margin) |
16 | ||
17 |
## Compute threshold for each variable |
|
18 | 5x |
if (!freq && is.function(threshold)) { |
19 | 1x |
thr <- apply(X = object, MARGIN = 2, FUN = threshold) |
20 | 1x |
thr <- matrix(thr, nrow = nrow(object), ncol = ncol(object), byrow = TRUE) |
21 | 1x |
thr <- ifelse(object > thr, color[length(color)], color[1L]) |
22 | 1x |
color <- as.vector(t(thr)) |
23 |
} |
|
24 | ||
25 |
## /!\ Bertin plot flips x and y axis /!\ |
|
26 | 5x |
data <- if (flip) t(object) else object |
27 | ||
28 | 5x |
plot_matrix(data, panel = panel_bertin, color = color, |
29 | 5x |
axes = axes, legend = FALSE, asp = NA) |
30 | ||
31 |
## Legend |
|
32 |
# TODO |
|
33 | ||
34 | 5x |
invisible(object) |
35 |
} |
|
36 |
) |
|
37 | ||
38 |
#' @export |
|
39 |
#' @rdname plot_bertin |
|
40 |
#' @aliases plot_bertin,data.frame-method |
|
41 |
setMethod( |
|
42 |
f = "plot_bertin", |
|
43 |
signature = signature(object = "data.frame"), |
|
44 |
definition = function(object, threshold = NULL, freq = FALSE, margin = 1, |
|
45 |
color = c("white", "black"), flip = TRUE, |
|
46 |
axes = TRUE, ...) { |
|
47 | 5x |
object <- data.matrix(object) |
48 | 5x |
methods::callGeneric(object, threshold = threshold, |
49 | 5x |
freq = freq, margin = margin, |
50 | 5x |
color = color, flip = flip, axes = axes) |
51 |
} |
|
52 |
) |
1 |
# PLOT RANK |
|
2 |
#' @include AllClasses.R AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname plot_rank |
|
7 |
#' @aliases plot_rank,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "plot_rank", |
|
10 |
signature = c(object = "matrix"), |
|
11 |
definition = function(object, log = NULL, |
|
12 |
color = NULL, symbol = FALSE, |
|
13 |
xlab = NULL, ylab = NULL, |
|
14 |
main = NULL, sub = NULL, |
|
15 |
ann = graphics::par("ann"), |
|
16 |
axes = TRUE, frame.plot = axes, |
|
17 |
panel.first = NULL, panel.last = NULL, |
|
18 |
legend = list(x = "topright"), ...) { |
|
19 |
## Prepare data |
|
20 | 2x |
n <- nrow(object) |
21 | 2x |
lab <- rownames(object) |
22 | 2x |
object <- object / rowSums(object) |
23 | 2x |
rk <- t(apply(X = object, MARGIN = 1, FUN = function(x) rank(-x))) |
24 | ||
25 |
## Graphical parameters |
|
26 | 2x |
lwd <- list(...)$lwd %||% graphics::par("lwd") |
27 | 2x |
lty <- list(...)$lty %||% graphics::par("lty") |
28 | 2x |
cex <- list(...)$cex %||% graphics::par("cex") |
29 | 2x |
if (length(lwd) == 1) lwd <- rep(lwd, length.out = n) |
30 | 2x |
if (length(lty) == 1) lty <- rep(lty, length.out = n) |
31 | 2x |
if (length(cex) == 1) cex <- rep(cex, length.out = n) |
32 | 1x |
if (is.null(log)) log <- "" |
33 | ||
34 | 2x |
pch <- list(...)$pch %||% 16 |
35 | 2x |
if (length(pch) == 1) pch <- rep(pch, length.out = n) |
36 | ! |
if (!isFALSE(symbol)) pch <- khroma::palette_shape(symbol)(lab) |
37 | ||
38 | 2x |
col <- list(...)$col %||% graphics::par("col") |
39 | 2x |
if (length(col) == 1) col <- rep(col, length.out = n) |
40 | 2x |
if (!isFALSE(color)) col <- khroma::palette_color_discrete(color)(lab) |
41 | ||
42 |
## Open new window |
|
43 | 2x |
grDevices::dev.hold() |
44 | 2x |
on.exit(grDevices::dev.flush(), add = TRUE) |
45 | 2x |
graphics::plot.new() |
46 | ||
47 |
## Set plotting coordinates |
|
48 | 2x |
xlim <- range(rk) |
49 | 2x |
ylim <- range(object) |
50 | 2x |
graphics::plot.window(xlim = xlim, ylim = ylim, log = log) |
51 | ||
52 |
## Evaluate pre-plot expressions |
|
53 | 2x |
panel.first |
54 | ||
55 |
## Plot |
|
56 | 2x |
for (i in seq_len(n)) { |
57 | 10x |
z <- order(rk[i, ]) |
58 | 10x |
graphics::lines(x = rk[i, z], y = object[i, z], |
59 | 10x |
col = col[i], lty = lty[i], lwd = lwd[i]) |
60 | 10x |
graphics::points(x = rk[i, z], y = object[i, z], |
61 | 10x |
col = col[i], pch = pch[i], cex = cex[i]) |
62 |
} |
|
63 | ||
64 |
## Evaluate post-plot and pre-axis expressions |
|
65 | 2x |
panel.last |
66 | ||
67 |
## Construct axis |
|
68 | 2x |
if (axes) { |
69 | 2x |
graphics::axis(side = 1, las = 1) |
70 | 2x |
graphics::axis(side = 2, las = 1) |
71 |
} |
|
72 | ||
73 |
## Plot frame |
|
74 | 2x |
if (frame.plot) { |
75 | 2x |
graphics::box() |
76 |
} |
|
77 | ||
78 |
## Add annotation |
|
79 | 2x |
if (ann) { |
80 | 2x |
xlab <- xlab %||% tr_("Rank") |
81 | 2x |
ylab <- ylab %||% tr_("Frequency") |
82 | 2x |
graphics::title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...) |
83 |
} |
|
84 | ||
85 |
## Legend |
|
86 | 2x |
if (is.list(legend) && length(legend) > 0) { |
87 | 1x |
args <- list(legend = lab, col = col, pch = pch, |
88 | 1x |
lty = lty, lwd = lwd, bty = "n") |
89 | 1x |
args <- utils::modifyList(args, legend) |
90 | 1x |
do.call(graphics::legend, args = args) |
91 |
} |
|
92 | ||
93 | 2x |
invisible(object) |
94 |
} |
|
95 |
) |
|
96 | ||
97 |
#' @export |
|
98 |
#' @rdname plot_rank |
|
99 |
#' @aliases plot_rank,data.frame-method |
|
100 |
setMethod( |
|
101 |
f = "plot_rank", |
|
102 |
signature = signature(object = "data.frame"), |
|
103 |
definition = function(object, log = NULL, |
|
104 |
xlab = NULL, ylab = NULL, |
|
105 |
main = NULL, sub = NULL, |
|
106 |
ann = graphics::par("ann"), |
|
107 |
axes = TRUE, frame.plot = axes, |
|
108 |
panel.first = NULL, panel.last = NULL, |
|
109 |
legend = list(x = "topright"), ...) { |
|
110 | 2x |
object <- data.matrix(object) |
111 | 2x |
methods::callGeneric(object, log = log, |
112 | 2x |
xlab = xlab, ylab = ylab, |
113 | 2x |
main = main, sub = sub, ann = ann, axes = axes, |
114 | 2x |
frame.plot = frame.plot, panel.first = panel.first, |
115 | 2x |
panel.last = panel.last, legend = legend, ...) |
116 |
} |
|
117 |
) |
1 |
# PLOT DICE-LERASS |
|
2 |
#' @include AllClasses.R AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname plot_diceleraas |
|
7 |
#' @aliases plot_diceleraas,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "plot_diceleraas", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object, |
|
12 |
main = NULL, sub = NULL, |
|
13 |
ann = graphics::par("ann"), |
|
14 |
axes = TRUE, frame.plot = FALSE, |
|
15 |
panel.first = NULL, panel.last = NULL, ...) { |
|
16 |
## Prepare data |
|
17 | 1x |
object <- t(object) |
18 | 1x |
object[object == 0] <- NA |
19 | 1x |
n <- nrow(object) |
20 | 1x |
id <- seq_len(n) |
21 | 1x |
lab <- rownames(object) %||% id |
22 | ||
23 |
## Mean |
|
24 | 1x |
moy <- rowMeans(object, na.rm = TRUE) |
25 |
## Standard deviation |
|
26 | 1x |
ec <- apply(X = object, MARGIN = 1, FUN = stats::sd, na.rm = TRUE) |
27 |
## Standard error |
|
28 | 1x |
se <- ec / sqrt(rowSums(!is.na(object))) |
29 |
## Range |
|
30 | 1x |
ran <- t(apply(X = object, MARGIN = 1, FUN = range, na.rm = TRUE)) |
31 | 1x |
colnames(ran) <- c("min", "max") |
32 | ||
33 | 1x |
data <- data.frame(y = rev(id), mean = moy, sd = ec, se = se * 2, ran) |
34 | ||
35 |
## Graphical parameters |
|
36 | 1x |
cex.axis <- list(...)$cex.axis %||% graphics::par("cex.axis") |
37 | 1x |
col.axis <- list(...)$col.axis %||% graphics::par("col.axis") |
38 | 1x |
font.axis <- list(...)$font.axis %||% graphics::par("font.axis") |
39 | 1x |
lwd <- list(...)$lwd %||% graphics::par("lwd") |
40 | 1x |
lty <- list(...)$lty %||% graphics::par("lty") |
41 | 1x |
col <- list(...)$col %||% c("black") |
42 | 1x |
if (length(lwd) < n) lwd <- rep(lwd, length.out = n) |
43 | 1x |
if (length(lty) < n) lty <- rep(lty, length.out = n) |
44 | 1x |
if (length(col) < n) col <- rep(col, length.out = n) |
45 | ||
46 |
## Save and restore |
|
47 | 1x |
mar <- graphics::par("mar") |
48 | 1x |
mar[2] <- inch2line(lab, cex = cex.axis) + 0.5 |
49 | 1x |
old_par <- graphics::par(mar = mar) |
50 | 1x |
on.exit(graphics::par(old_par)) |
51 | ||
52 |
## Open new window |
|
53 | 1x |
grDevices::dev.hold() |
54 | 1x |
on.exit(grDevices::dev.flush(), add = TRUE) |
55 | 1x |
graphics::plot.new() |
56 | ||
57 |
## Set plotting coordinates |
|
58 | 1x |
xlim <- range(data$min, data$max, data$mean + data$sd, |
59 | 1x |
data$mean - data$sd, na.rm = TRUE) |
60 | 1x |
ylim <- c(1, n + 1) |
61 | 1x |
graphics::plot.window(xlim = xlim, ylim = ylim) |
62 | ||
63 |
## Evaluate pre-plot expressions |
|
64 | 1x |
panel.first |
65 | ||
66 |
## Plot |
|
67 | 1x |
for (i in id) { |
68 | 5x |
tmp <- data[i, ] |
69 | 5x |
graphics::polygon( |
70 | 5x |
x = tmp$sd * c(-1, -1, 1, 1) + tmp$mean, |
71 | 5x |
y = tmp$y + (1 / 3) * c(0, 1, 1, 0), |
72 | 5x |
col = "white", border = NA |
73 |
) |
|
74 | 5x |
graphics::lines( |
75 | 5x |
x = tmp$sd * c(-1, -1, 1, 1) + tmp$mean, |
76 | 5x |
y = tmp$y + (1 / 3) * c(0, 1, 1, 0), |
77 | 5x |
col = col[i], lty = lty[i] |
78 |
) |
|
79 | 5x |
graphics::polygon( |
80 | 5x |
x = tmp$se * c(-1, -1, 1, 1) + tmp$mean, |
81 | 5x |
y = tmp$y + (1 / 3) * c(0, 1, 1, 0), |
82 | 5x |
col = col[i], border = NA |
83 |
) |
|
84 | 5x |
graphics::segments( |
85 | 5x |
x0 = tmp$mean, y0 = tmp$y, |
86 | 5x |
x1 = tmp$mean, y1 = tmp$y + 0.5, |
87 | 5x |
col = col[i], lty = lty[i] |
88 |
) |
|
89 | 5x |
graphics::segments( |
90 | 5x |
x0 = tmp$min, y0 = tmp$y, |
91 | 5x |
x1 = tmp$max, y1 = tmp$y, |
92 | 5x |
col = col[i], lty = lty[i] |
93 |
) |
|
94 |
} |
|
95 | ||
96 |
## Evaluate post-plot and pre-axis expressions |
|
97 | 1x |
panel.last |
98 | ||
99 |
## Construct axis |
|
100 | 1x |
if (axes) { |
101 | 1x |
graphics::axis(side = 1, las = 1) |
102 | 1x |
graphics::mtext(rev(lab), side = 2, at = id, las = 1, padj = 0, line = 0, |
103 | 1x |
cex = cex.axis, col.axis = col.axis, font = font.axis) |
104 |
} |
|
105 | ||
106 |
## Plot frame |
|
107 | 1x |
if (frame.plot) { |
108 | ! |
graphics::box() |
109 |
} |
|
110 | ||
111 |
## Add annotation |
|
112 | 1x |
if (ann) { |
113 | 1x |
graphics::title(main = main, sub = sub, |
114 | 1x |
xlab = tr_("Absolute frequency"), ylab = NULL, ...) |
115 |
} |
|
116 | ||
117 | 1x |
invisible(object) |
118 |
} |
|
119 |
) |
|
120 | ||
121 |
#' @export |
|
122 |
#' @rdname plot_diceleraas |
|
123 |
#' @aliases plot_diceleraas,data.frame-method |
|
124 |
setMethod( |
|
125 |
f = "plot_diceleraas", |
|
126 |
signature = signature(object = "data.frame"), |
|
127 |
definition = function(object, |
|
128 |
main = NULL, sub = NULL, |
|
129 |
ann = graphics::par("ann"), |
|
130 |
axes = TRUE, frame.plot = FALSE, |
|
131 |
panel.first = NULL, panel.last = NULL, ...) { |
|
132 | 1x |
object <- data.matrix(object) |
133 | 1x |
methods::callGeneric(object, |
134 | 1x |
main = main, sub = sub, ann = ann, |
135 | 1x |
axes = axes, frame.plot = frame.plot, |
136 | 1x |
panel.first = panel.first, panel.last = panel.last, ...) |
137 |
} |
|
138 |
) |
1 |
# MATRIGRAPH |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname matrigraph |
|
7 |
#' @aliases pvi,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "pvi", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object) { |
|
12 | 3x |
pvi <- object * 100 / expected(object) |
13 | 3x |
dimnames(pvi) <- dimnames(object) |
14 | 3x |
pvi |
15 |
} |
|
16 |
) |
|
17 | ||
18 |
#' @export |
|
19 |
#' @rdname matrigraph |
|
20 |
#' @aliases pvi,data.frame-method |
|
21 |
setMethod( |
|
22 |
f = "pvi", |
|
23 |
signature = signature(object = "data.frame"), |
|
24 |
definition = function(object) { |
|
25 | 1x |
object <- data.matrix(object) |
26 | 1x |
methods::callGeneric(object) |
27 |
} |
|
28 |
) |
|
29 | ||
30 |
#' @export |
|
31 |
#' @rdname matrigraph |
|
32 |
#' @aliases matrigraph,matrix-method |
|
33 |
setMethod( |
|
34 |
f = "matrigraph", |
|
35 |
signature = signature(object = "matrix"), |
|
36 |
definition = function(object, reverse = FALSE, axes = TRUE, ...) { |
|
37 | 2x |
plot_matrix(pvi(object), panel = panel_matrigraph, scale = FALSE, |
38 | 2x |
axes = axes, legend = FALSE, asp = 1, reverse = reverse) |
39 | 2x |
invisible(object) |
40 |
} |
|
41 |
) |
|
42 | ||
43 |
#' @export |
|
44 |
#' @rdname matrigraph |
|
45 |
#' @aliases matrigraph,data.frame-method |
|
46 |
setMethod( |
|
47 |
f = "matrigraph", |
|
48 |
signature = signature(object = "data.frame"), |
|
49 |
definition = function(object, reverse = FALSE, ...) { |
|
50 | 2x |
object <- data.matrix(object) |
51 | 2x |
methods::callGeneric(object, reverse = reverse, ...) |
52 |
} |
|
53 |
) |
1 |
# PLOT SPOT |
|
2 |
#' @include AllClasses.R AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname plot_spot |
|
7 |
#' @aliases plot_spot,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "plot_spot", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object, type = c("ring", "plain"), |
|
12 |
color = NULL, |
|
13 |
diag = TRUE, upper = TRUE, lower = TRUE, |
|
14 |
freq = FALSE, margin = 1, |
|
15 |
axes = TRUE, legend = TRUE, ...) { |
|
16 |
## Validation |
|
17 | 7x |
type <- match.arg(type, several.ok = FALSE) |
18 | ||
19 |
## Backward compatibility |
|
20 | 7x |
col <- list(...)$col |
21 | ! |
if (!is.null(col) && is.null(color)) color <- col |
22 | ||
23 | 7x |
plot_matrix(object, panel = panel_spot, color = color, |
24 | 7x |
diag = diag, upper = upper, lower = lower, |
25 | 7x |
freq = freq, margin = margin, drop_zero = TRUE, |
26 | 7x |
axes = axes, legend = legend, type = type) |
27 | ||
28 | 7x |
invisible(object) |
29 |
} |
|
30 |
) |
|
31 | ||
32 |
#' @export |
|
33 |
#' @rdname plot_spot |
|
34 |
#' @aliases plot_spot,data.frame-method |
|
35 |
setMethod( |
|
36 |
f = "plot_spot", |
|
37 |
signature = signature(object = "data.frame"), |
|
38 |
definition = function(object, type = c("ring", "plain"), |
|
39 |
color = NULL, |
|
40 |
diag = TRUE, upper = TRUE, lower = TRUE, |
|
41 |
freq = FALSE, margin = 1, |
|
42 |
axes = TRUE, legend = TRUE, ...) { |
|
43 | 4x |
object <- data.matrix(object) |
44 | 4x |
methods::callGeneric(object, type = type, color = color, |
45 | 4x |
diag = diag, upper = upper, lower = lower, |
46 | 4x |
freq = freq, margin = margin, |
47 | 4x |
axes = axes, legend = legend, ...) |
48 |
} |
|
49 |
) |
|
50 | ||
51 |
#' @export |
|
52 |
#' @rdname plot_spot |
|
53 |
#' @aliases plot_spot,dist-method |
|
54 |
setMethod( |
|
55 |
f = "plot_spot", |
|
56 |
signature = signature(object = "dist"), |
|
57 |
definition = function(object, type = c("ring", "plain"), |
|
58 |
color = NULL, |
|
59 |
diag = FALSE, upper = FALSE, lower = !upper, |
|
60 |
axes = TRUE, legend = TRUE, ...) { |
|
61 |
# index_name <- attr(object, "method") |
|
62 | 3x |
object <- as.matrix(object) |
63 | 3x |
methods::callGeneric(object, type = type, color = color, |
64 | 3x |
diag = diag, upper = upper, lower = lower, |
65 | 3x |
axes = axes, legend = legend) |
66 |
} |
|
67 |
) |
1 |
# PLOT HEATMAP |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname plot_heatmap |
|
7 |
#' @aliases plot_heatmap,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "plot_heatmap", |
|
10 |
signature = signature(object = "matrix"), |
|
11 |
definition = function(object, color = NULL, |
|
12 |
diag = TRUE, upper = TRUE, lower = TRUE, |
|
13 |
freq = FALSE, margin = 1, fixed_ratio = TRUE, |
|
14 |
axes = TRUE, legend = TRUE, ...) { |
|
15 |
## Backward compatibility |
|
16 | 7x |
col <- list(...)$col |
17 | ! |
if (!is.null(col) && is.null(color)) color <- col |
18 | ||
19 | 7x |
plot_matrix(object, panel = panel_tiles, color = color, |
20 | 7x |
diag = diag, upper = upper, lower = lower, |
21 | 7x |
freq = freq, margin = margin, drop_zero = FALSE, |
22 | 7x |
axes = axes, legend = legend, asp = fixed_ratio) |
23 | ||
24 | 7x |
invisible(object) |
25 |
} |
|
26 |
) |
|
27 | ||
28 |
#' @export |
|
29 |
#' @rdname plot_heatmap |
|
30 |
#' @aliases plot_heatmap,data.frame-method |
|
31 |
setMethod( |
|
32 |
f = "plot_heatmap", |
|
33 |
signature = signature(object = "data.frame"), |
|
34 |
definition = function(object, color = NULL, |
|
35 |
diag = TRUE, upper = TRUE, lower = TRUE, |
|
36 |
freq = FALSE, margin = 1, fixed_ratio = TRUE, |
|
37 |
axes = TRUE, legend = TRUE, ...) { |
|
38 | 4x |
object <- data.matrix(object) |
39 | 4x |
methods::callGeneric(object, color = color, |
40 | 4x |
diag = diag, upper = upper, lower = lower, |
41 | 4x |
freq = freq, margin = margin, |
42 | 4x |
fixed_ratio = fixed_ratio, |
43 | 4x |
axes = axes, legend = legend) |
44 |
} |
|
45 |
) |
|
46 | ||
47 |
#' @export |
|
48 |
#' @rdname plot_heatmap |
|
49 |
#' @aliases plot_heatmap,dist-method |
|
50 |
setMethod( |
|
51 |
f = "plot_heatmap", |
|
52 |
signature = signature(object = "dist"), |
|
53 |
definition = function(object, color = NULL, |
|
54 |
diag = FALSE, upper = FALSE, lower = !upper, |
|
55 |
axes = TRUE, legend = TRUE, ...) { |
|
56 | 2x |
object <- as.matrix(object) |
57 | 2x |
methods::callGeneric(object, color = color, |
58 | 2x |
diag = diag, upper = upper, lower = lower, |
59 | 2x |
axes = axes, legend = legend) |
60 |
} |
|
61 |
) |
1 |
# CO-OCCURRENCE |
|
2 |
#' @include AllGenerics.R |
|
3 |
NULL |
|
4 | ||
5 |
#' @export |
|
6 |
#' @rdname occurrence |
|
7 |
#' @aliases occurrence,matrix-method |
|
8 |
setMethod( |
|
9 |
f = "occurrence", |
|
10 |
signature = c(object = "matrix"), |
|
11 |
definition = function(object, method = c("absolute", "relative", "binomial")) { |
|
12 |
## Validation |
|
13 | 3x |
method <- match.arg(method, several.ok = FALSE) |
14 | ||
15 |
## Pairwise comparison |
|
16 | 3x |
p <- ncol(object) |
17 | 3x |
labels <- colnames(object) |
18 | ||
19 | 3x |
if (method == "absolute" || method == "relative") { |
20 | 3x |
incid <- object > 0 |
21 | 3x |
fun <- function(x) sum(incid[, x[1]] + incid[, x[2]] == 2) |
22 |
} |
|
23 | 3x |
if (method == "binomial") { |
24 | ! |
fun <- function(x) index_binomial(object[, x[1]], object[, x[2]]) |
25 |
} |
|
26 | ||
27 | 3x |
cbn <- utils::combn(p, m = 2, simplify = TRUE) |
28 | 3x |
index <- apply(X = cbn, MARGIN = 2, FUN = fun) |
29 | ||
30 |
## Matrix of results |
|
31 | 3x |
mtx <- matrix(data = 0, nrow = p, ncol = p, |
32 | 3x |
dimnames = list(labels, labels)) |
33 | 3x |
mtx[lower.tri(mtx, diag = FALSE)] <- index |
34 | 3x |
mtx <- t(mtx) |
35 | 3x |
mtx[lower.tri(mtx, diag = FALSE)] <- index |
36 | ||
37 | 3x |
if (method == "relative") { |
38 | ! |
mtx <- mtx / nrow(object) |
39 |
} |
|
40 | ||
41 | 3x |
occ <- stats::as.dist(mtx) |
42 | 3x |
attr(occ, "total") <- nrow(object) |
43 | 3x |
occ |
44 |
} |
|
45 |
) |
|
46 | ||
47 |
#' @export |
|
48 |
#' @rdname occurrence |
|
49 |
#' @aliases occurrence,data.frame-method |
|
50 |
setMethod( |
|
51 |
f = "occurrence", |
|
52 |
signature = c(object = "data.frame"), |
|
53 |
definition = function(object, method = c("absolute", "relative", "binomial")) { |
|
54 | 1x |
object <- data.matrix(object) |
55 | 1x |
methods::callGeneric(object, method = method) |
56 |
} |
|
57 |
) |
|
58 | ||
59 |
## Binomial co-occurrence ------------------------------------------------------ |
|
60 |
#' @export |
|
61 |
#' @rdname index_binomial |
|
62 |
#' @aliases index_binomial,numeric,numeric-method |
|
63 |
setMethod( |
|
64 |
f = "index_binomial", |
|
65 |
signature = c(x = "numeric", y = "numeric"), |
|
66 |
definition = function(x, y) { |
|
67 |
## Validation |
|
68 | 1x |
arkhe::assert_length(y, length(x)) |
69 | ||
70 |
## Total number of assemblages |
|
71 | 1x |
N <- length(x) |
72 |
## Expected proportion of co-occurrences for artifact classes |
|
73 | 1x |
p <- sum(x > 0) * sum(y > 0) / N^2 |
74 |
## Number of observed co-occurence for artifact classes |
|
75 | 1x |
o <- sum((x > 0) + (y > 0) == 2) |
76 | 1x |
if (p == 1) { |
77 |
## Avoid NaN generation |
|
78 |
## TODO: warning ? |
|
79 | ! |
Cbi <- 0 |
80 |
} else { |
|
81 | 1x |
Cbi <- (o - N * p) / sqrt(N * p * (1 - p)) |
82 |
} |
|
83 | 1x |
Cbi |
84 |
} |
|
85 |
) |
1 |
# COERCION |
|
2 |
#' @include AllGenerics.R AllClasses.R |
|
3 |
NULL |
|
4 | ||
5 |
# To data.frame ================================================================ |
|
6 |
#' @method as.data.frame DiversityIndex |
|
7 |
#' @export |
|
8 |
as.data.frame.DiversityIndex <- function(x, ...) { |
|
9 | 2x |
data.frame( |
10 | 2x |
observed = apply(X = x@data, MARGIN = 1, FUN = observed), |
11 | 2x |
singleton = apply(X = x@data, MARGIN = 1, FUN = singleton), |
12 | 2x |
doubleton = apply(X = x@data, MARGIN = 1, FUN = doubleton), |
13 | 2x |
size = x@size, |
14 | 2x |
index = x@.Data, |
15 | 2x |
row.names = labels(x), |
16 | 2x |
stringsAsFactors = FALSE |
17 |
) |
|
18 |
} |
|
19 | ||
20 |
#' @export |
|
21 |
#' @rdname data.frame |
|
22 |
#' @aliases as.data.frame,DiversityIndex-method |
|
23 |
setMethod("as.data.frame", "DiversityIndex", as.data.frame.DiversityIndex) |
1 |
# SHOW METHODS |
|
2 |
#' @include AllClasses.R |
|
3 |
NULL |
|
4 | ||
5 |
setMethod( |
|
6 |
f = "show", |
|
7 |
signature = "DiversityIndex", |
|
8 |
definition = function(object) { |
|
9 | ! |
methods::callGeneric(object@.Data) |
10 |
} |
|
11 |
) |
|
12 |
setMethod( |
|
13 |
f = "show", |
|
14 |
signature = "RarefactionIndex", |
|
15 |
definition = function(object) { |
|
16 | ! |
methods::callGeneric(object@.Data) |
17 |
} |
|
18 |
) |