Coerce to a Data Frame
Usage
# S4 method for class 'TimeSeries'
as.data.frame(x, ..., calendar = NULL)
# S4 method for class 'TimeIntervals'
as.data.frame(x, ..., calendar = NULL)
Arguments
- x
A
TimeSeries
or aTimeIntervals
object.- ...
Further parameters to be passed to
data.frame()
.- calendar
A
TimeScale
object specifying the target calendar (seecalendar()
). IfNULL
(the default), rata die are returned.
Value
A data.frame
.
Methods (by class)
as.data.frame(TimeSeries)
: Returns a longdata.frame
with the following columns:time
The (decimal) years at which the time series was sampled.
series
The name of the time series.
variable
The name of the variables.
value
The observed value.
as.data.frame(TimeIntervals)
: Returns adata.frame
with the following columns:label
The name of the intervals.
start
The start time of the intervals, in (decimal) years.
end
The end time of the intervals, in (decimal) years.
Examples
## Create time-series of 20 observations
## Univariate
## Sampled every years starting from 1029 BCE
(X <- series(rnorm(30), time = 1029:1000, calendar = BCE()))
#> 30 x 1 x 1 time series observed between -1029 CE and -1000 CE
## Terminal and sampling times (returns rata die)
start(X)
#> [1] -376199
end(X)
#> [1] -365607
time(X)
#> Rata die: number of days since 01-01-01 (Gregorian)
#> [1] -376199 -375834 -375468 -375103 -374738 -374373 -374007 -373642 -373277
#> [10] -372912 -372546 -372181 -371816 -371451 -371085 -370720 -370355 -369990
#> [19] -369624 -369259 -368894 -368529 -368163 -367798 -367433 -367068 -366702
#> [28] -366337 -365972 -365607
span(X)
#> [1] 10592
## Multivariate
## Sampled every century starting from 1000 CE
(Y <- series(matrix(rnorm(90), 30, 3), time = 1000:1029, calendar = CE()))
#> 30 x 3 x 1 time series observed between 1000 CE and 1029 CE
## Terminal and sampling times (returns Gregorian Common Era years)
start(Y, calendar = CE())
#> [1] 1000
end(Y, calendar = CE())
#> [1] 1029
time(Y, calendar = CE())
#> [1] 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
#> [16] 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
span(Y, calendar = CE())
#> [1] 29
## Coerce to data frame
df <- as.data.frame(Y, calendar = BP())
head(df)
#> time series variable value
#> 1 950 S1 A 0.9353632
#> 2 949 S1 A 0.1764886
#> 3 948 S1 A 0.2436855
#> 4 947 S1 A 1.6235489
#> 5 946 S1 A 0.1120381
#> 6 945 S1 A -0.1339970