Create Time Series
Usage
series(object, time, calendar, ...)
# S4 method for class 'array,RataDie,missing'
series(object, time, names = NULL)
# S4 method for class 'array,numeric,TimeScale'
series(object, time, calendar, scale = 1, names = NULL)
# S4 method for class 'matrix,numeric,TimeScale'
series(object, time, calendar, scale = 1, names = NULL)
# S4 method for class 'matrix,RataDie,missing'
series(object, time, names = NULL)
# S4 method for class 'numeric,numeric,TimeScale'
series(object, time, calendar, scale = 1, names = NULL)
# S4 method for class 'numeric,RataDie,missing'
series(object, time, names = NULL)
# S4 method for class 'data.frame,numeric,TimeScale'
series(object, time, calendar, scale = 1, names = NULL)
# S4 method for class 'data.frame,RataDie,missing'
series(object, time, names = NULL)
Arguments
- object
A
numeric
vector
,matrix
orarray
of the observed time-series values. Adata.frame
will be coerced to anumeric
matrix
viadata.matrix()
.- time
A
numeric
vector of (decimal) years or aRataDie
object (seefixed()
).- calendar
A
TimeScale
object specifying the calendar oftime
(seecalendar()
). If missing,time
must be aRataDie
object.- ...
Currently not used.
- names
A
character
string specifying the names of the time series.- scale
A length-one
numeric
vector specifying the number of years represented by one unit. It should be a power of 10 (i.e. 1000 means ka).
Value
A TimeSeries
object.
See also
Other time series tools:
data.frame
,
span()
,
start()
,
time()
,
window()
Examples
## Create time-series of 20 observations
## Univariate
## Sampled every years starting from 1029 BCE
(X <- series(rnorm(30), time = 1029:1000, calendar = BCE()))
#> 30 x 1 x 1 time series observed between -376199 and -365607 r.d.
## Terminal and sampling times (returns rata die)
start(X)
#> [1] -376199
end(X)
#> [1] -365607
time(X)
#> Rata die: number of days since 01-01-01 (Gregorian).
#> [1] -376199 -375834 -375468 -375103 -374738 -374373 -374007 -373642 -373277
#> [10] -372912 -372546 -372181 -371816 -371451 -371085 -370720 -370355 -369990
#> [19] -369624 -369259 -368894 -368529 -368163 -367798 -367433 -367068 -366702
#> [28] -366337 -365972 -365607
span(X)
#> [1] 10592
## Multivariate
## Sampled every century starting from 1000 CE
(Y <- series(matrix(rnorm(90), 30, 3), time = 1000:1029, calendar = CE()))
#> 30 x 3 x 1 time series observed between 364878 and 375470 r.d.
## Terminal and sampling times (returns Gregorian Common Era years)
start(Y, calendar = CE())
#> [1] 1000
end(Y, calendar = CE())
#> [1] 1029
time(Y, calendar = CE())
#> [1] 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
#> [16] 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
span(Y, calendar = CE())
#> [1] 29.99726
## Coerce to data frame
df <- as.data.frame(Y, calendar = BP())
head(df)
#> time series variable value
#> 1 950 S1 A -0.31455274
#> 2 949 S1 A -0.48054281
#> 3 948 S1 A 0.83625425
#> 4 947 S1 A -0.05234929
#> 5 946 S1 A 0.95195762
#> 6 945 S1 A 1.49451280