Chronological Apportioning
Usage
apportion(object, ...)
# S4 method for class 'data.frame'
apportion(
object,
s0,
s1,
t0,
t1,
from = min(s0),
to = max(s1),
step = 25,
method = c("uniform", "truncated"),
z = 2,
progress = getOption("kairos.progress")
)
# S4 method for class 'matrix'
apportion(
object,
s0,
s1,
t0,
t1,
from = min(s0),
to = max(s1),
step = 25,
method = c("uniform", "truncated"),
z = 2,
progress = getOption("kairos.progress")
)Arguments
- object
A \(m \times p\)
numericmatrixordata.frameof count data (absolute frequencies giving the number of individuals for each category, i.e. a contingency table). Adata.framewill be coerced to anumericmatrixviadata.matrix().- ...
Currently not used.
- s0
A length-\(m\)
numericvector giving the site beginning dates expressed in CE years (BCE years must be given as negative numbers).- s1
A length-\(m\)
numericvector giving the site end dates expressed in CE years (BCE years must be given as negative numbers).- t0
A length-\(p\)
numericvector giving the type beginning dates expressed in CE years (BCE years must be given as negative numbers).- t1
A length-\(p\)
numericvector giving the type end dates expressed in CE years (BCE years must be given as negative numbers).- from
A length-one
numericvector giving the beginning of the period of interest (in years CE).- to
A length-one
numericvector giving the end of the period of interest (in years CE).- step
A length-one
integervector giving the step size, i.e. the width of each time step for apportioning (in years CE; defaults to \(25\)).- method
A
characterstring specifying the distribution to be used (type popularity curve). It must be one of "uniform" (uniform distribution) or "truncated" (truncated standard normal distribution). Any unambiguous substring can be given.- z
An
integervalue giving the lower and upper truncation points (defaults to \(2\)). Only used ifmethodis "truncated".- progress
A
logicalscalar: should a progress bar be displayed?
Value
A CountApportion object.
References
Roberts, J. M., Mills, B. J., Clark, J. J., Haas, W. R., Huntley, D. L. & Trowbridge, M. A. (2012). A Method for Chronological Apportioning of Ceramic Assemblages. Journal of Archaeological Science, 39(5): 1513-20. doi:10.1016/j.jas.2011.12.022 .
See also
Other chronological analysis:
fit()
Examples
## Replication of Roberts et al. 2012
bayless <- matrix(data = c(4, 333, 11, 11, 13, 1605, 252, 9, 48), nrow = 1)
rownames(bayless) <- c("Bayless")
colnames(bayless) <- c("CWW", "CBW", "LMGRW", "LTB", "MMS",
"PBW", "RRW", "SCBW", "TBBW")
## Set ware start and end dates
start <- c(550, 800, 1200, 1150, 1275, 200, 1275, 1200, 750)
end <- c(1325, 1400, 1450, 1300, 1400, 1450, 1450, 1450, 1300)
## Apportion ceramic assemblage under flat/uniform distribution
app <- apportion(bayless, s0 = 1200, s1 = 1350, t0 = start, t1 = end,
step = 50, method = "uniform")
as.data.frame(app)
#> start end site type count
#> 1 1200 1250 Bayless CWW 1.600000
#> 2 1250 1300 Bayless CWW 1.600000
#> 3 1300 1350 Bayless CWW 0.800000
#> 4 1200 1250 Bayless CBW 111.000000
#> 5 1250 1300 Bayless CBW 111.000000
#> 6 1300 1350 Bayless CBW 111.000000
#> 7 1200 1250 Bayless LMGRW 3.666667
#> 8 1250 1300 Bayless LMGRW 3.666667
#> 9 1300 1350 Bayless LMGRW 3.666667
#> 10 1200 1250 Bayless LTB 5.500000
#> 11 1250 1300 Bayless LTB 5.500000
#> 12 1300 1350 Bayless LTB 0.000000
#> 13 1200 1250 Bayless MMS 0.000000
#> 14 1250 1300 Bayless MMS 4.333333
#> 15 1300 1350 Bayless MMS 8.666667
#> 16 1200 1250 Bayless PBW 535.000000
#> 17 1250 1300 Bayless PBW 535.000000
#> 18 1300 1350 Bayless PBW 535.000000
#> 19 1200 1250 Bayless RRW 0.000000
#> 20 1250 1300 Bayless RRW 84.000000
#> 21 1300 1350 Bayless RRW 168.000000
#> 22 1200 1250 Bayless SCBW 3.000000
#> 23 1250 1300 Bayless SCBW 3.000000
#> 24 1300 1350 Bayless SCBW 3.000000
#> 25 1200 1250 Bayless TBBW 24.000000
#> 26 1250 1300 Bayless TBBW 24.000000
#> 27 1300 1350 Bayless TBBW 0.000000
## Apportion ceramic assemblage under truncated standard normal distribution
app <- apportion(bayless, s0 = 1200, s1 = 1350, t0 = start, t1 = end,
step = 50, method = "truncated", z = 2)
as.data.frame(app)
#> start end site type count
#> 1 1200 1250 Bayless CWW 2.1144606
#> 2 1250 1300 Bayless CWW 1.3977515
#> 3 1300 1350 Bayless CWW 0.4877879
#> 4 1200 1250 Bayless CBW 152.6501312
#> 5 1250 1300 Bayless CBW 109.7148199
#> 6 1300 1350 Bayless CBW 70.6350489
#> 7 1200 1250 Bayless LMGRW 1.6051217
#> 8 1250 1300 Bayless LMGRW 3.9903710
#> 9 1300 1350 Bayless LMGRW 5.4045073
#> 10 1200 1250 Bayless LTB 7.5130860
#> 11 1250 1300 Bayless LTB 3.4869140
#> 12 1300 1350 Bayless LTB 0.0000000
#> 13 1200 1250 Bayless MMS 0.0000000
#> 14 1250 1300 Bayless MMS 1.8969620
#> 15 1300 1350 Bayless MMS 11.1030380
#> 16 1200 1250 Bayless PBW 658.8079870
#> 17 1250 1300 Bayless PBW 530.2218866
#> 18 1300 1350 Bayless PBW 415.9701264
#> 19 1200 1250 Bayless RRW 0.0000000
#> 20 1250 1300 Bayless RRW 37.1740322
#> 21 1300 1350 Bayless RRW 214.8259678
#> 22 1200 1250 Bayless SCBW 1.3132814
#> 23 1250 1300 Bayless SCBW 3.2648490
#> 24 1300 1350 Bayless SCBW 4.4218696
#> 25 1200 1250 Bayless TBBW 30.8655718
#> 26 1250 1300 Bayless TBBW 17.1344282
#> 27 1300 1350 Bayless TBBW 0.0000000
