Chronological Apportioning
Usage
apportion(object, ...)
# S4 method for class 'data.frame'
apportion(
object,
s0,
s1,
t0,
t1,
from = min(s0),
to = max(s1),
step = 25,
method = c("uniform", "truncated"),
z = 2,
progress = getOption("kairos.progress")
)
# S4 method for class 'matrix'
apportion(
object,
s0,
s1,
t0,
t1,
from = min(s0),
to = max(s1),
step = 25,
method = c("uniform", "truncated"),
z = 2,
progress = getOption("kairos.progress")
)
Arguments
- object
A \(m \times p\)
numeric
matrix
ordata.frame
of count data (absolute frequencies giving the number of individuals for each category, i.e. a contingency table). Adata.frame
will be coerced to anumeric
matrix
viadata.matrix()
.- ...
Currently not used.
- s0
A length-\(m\)
numeric
vector giving the site beginning dates expressed in CE years (BCE years must be given as negative numbers).- s1
A length-\(m\)
numeric
vector giving the site end dates expressed in CE years (BCE years must be given as negative numbers).- t0
A length-\(p\)
numeric
vector giving the type beginning dates expressed in CE years (BCE years must be given as negative numbers).- t1
A length-\(p\)
numeric
vector giving the type end dates expressed in CE years (BCE years must be given as negative numbers).- from
A length-one
numeric
vector giving the beginning of the period of interest (in years CE).- to
A length-one
numeric
vector giving the end of the period of interest (in years CE).- step
A length-one
integer
vector giving the step size, i.e. the width of each time step for apportioning (in years CE; defaults to \(25\)).- method
A
character
string specifying the distribution to be used (type popularity curve). It must be one of "uniform
" (uniform distribution) or "truncated
" (truncated standard normal distribution). Any unambiguous substring can be given.- z
An
integer
value giving the lower and upper truncation points (defaults to \(2\)). Only used ifmethod
is "truncated
".- progress
A
logical
scalar: should a progress bar be displayed?
Value
A CountApportion
object.
References
Roberts, J. M., Mills, B. J., Clark, J. J., Haas, W. R., Huntley, D. L. & Trowbridge, M. A. (2012). A Method for Chronological Apportioning of Ceramic Assemblages. Journal of Archaeological Science, 39(5): 1513-20. doi:10.1016/j.jas.2011.12.022 .
Examples
## Replication of Roberts et al. 2012
bayless <- matrix(
data = c(4, 333, 11, 11, 13, 1605, 252, 9, 48), nrow = 1,
dimnames = list(c("Bayless"), c("CWW", "CBW", "LMGRW", "LTB", "MMS",
"PBW", "RRW", "SCBW", "TBBW"))
)
## Set ware start and end dates
start <- c(550, 800, 1200, 1150, 1275, 200, 1275, 1200, 750)
end <- c(1325, 1400, 1450, 1300, 1400, 1450, 1450, 1450, 1300)
## Apportion ceramic assemblage under flat/uniform distribution
app <- apportion(bayless, s0 = 1200, s1 = 1350, t0 = start, t1 = end,
step = 50, method = "uniform")
## Apportion ceramic assemblage under truncated standard normal distribution
app <- apportion(bayless, s0 = 1200, s1 = 1350, t0 = start, t1 = end,
step = 50, method = "truncated", z = 2)
## Array of results
head(app)
#> , , 1200_1250
#>
#> CWW CBW LMGRW LTB MMS PBW RRW SCBW TBBW
#> Bayless 2.114461 152.6501 1.605122 7.513086 0 658.808 0 1.313281 30.86557
#>
#> , , 1250_1300
#>
#> CWW CBW LMGRW LTB MMS PBW RRW SCBW
#> Bayless 1.397752 109.7148 3.990371 3.486914 1.896962 530.2219 37.17403 3.264849
#> TBBW
#> Bayless 17.13443
#>
#> , , 1300_1350
#>
#> CWW CBW LMGRW LTB MMS PBW RRW SCBW TBBW
#> Bayless 0.4877879 70.63505 5.404507 0 11.10304 415.9701 214.826 4.42187 0
#>