Skip to contents

Fabio Crameri's grayC Sequential Color Scheme

Usage

scale_colour_grayC(
  ...,
  reverse = FALSE,
  range = c(0, 1),
  discrete = FALSE,
  aesthetics = "colour"
)

scale_color_grayC(
  ...,
  reverse = FALSE,
  range = c(0, 1),
  discrete = FALSE,
  aesthetics = "colour"
)

scale_fill_grayC(
  ...,
  reverse = FALSE,
  range = c(0, 1),
  discrete = FALSE,
  aesthetics = "fill"
)

scale_edge_colour_grayC(
  ...,
  reverse = FALSE,
  range = c(0, 1),
  discrete = FALSE,
  aesthetics = "edge_colour"
)

scale_edge_color_grayC(
  ...,
  reverse = FALSE,
  range = c(0, 1),
  discrete = FALSE,
  aesthetics = "edge_colour"
)

scale_edge_fill_grayC(
  ...,
  reverse = FALSE,
  range = c(0, 1),
  discrete = FALSE,
  aesthetics = "edge_fill"
)

Source

Crameri, F. (2021). Scientific colour maps. Zenodo, v7.0. doi:10.5281/zenodo.4491293

Arguments

...

Arguments passed to ggplot2::continuous_scale().

reverse

A logical scalar. Should the resulting vector of colors be reversed?

range

A length-two numeric vector specifying the fraction of the scheme's color domain to keep.

discrete

A logical scalar: should the color scheme be used as a discrete scale?

aesthetics

A character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with.

Value

A continuous scale.

Sequential Color Schemes

If more colors than defined are needed from a given scheme, the color coordinates are linearly interpolated to provide a continuous version of the scheme.

PaletteMax.
batlow256
batlowW256
batlowK256
devon256
lajolla256
bamako256
davos256
bilbao256
nuuk256
oslo256
grayC256
hawaii256
lapaz256
tokyo256
buda256
acton256
turku256
imola256
oleron*256
bukavu*256
fes*256

*: multisequential color schemes.

References

Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geosci. Model Dev., 11, 2541-2562. doi:10.5194/gmd-11-2541-2018

Crameri, F., Shephard, G. E. & Heron, P. J. (2020). The misuse of colour in science communication. Nature Communications, 11, 5444. doi:10.1038/s41467-020-19160-7

Author

N. Frerebeau

Examples

data(faithfuld, package = "ggplot2")

ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
  ggplot2::geom_raster() +
  scale_fill_batlow()


ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
  ggplot2::geom_raster() +
  scale_fill_bamako()


ggplot2::ggplot(faithfuld, ggplot2::aes(waiting, eruptions, fill = density)) +
  ggplot2::geom_raster() +
  scale_fill_hawaii(reverse = TRUE)