Reciprocal Ranking Seriation
Arguments
- object
A \(m \times p\)
numeric
matrix
ordata.frame
of count data (absolute frequencies giving the number of individuals for each category, i.e. a contingency table). Adata.frame
will be coerced to anumeric
matrix
viadata.matrix()
.- ...
Currently not used.
- EPPM
A
logical
scalar: should the seriation be computed on EPPM instead of raw data?- margin
A
numeric
vector giving the subscripts which the rearrangement will be applied over:1
indicates rows,2
indicates columns,c(1, 2)
indicates rows then columns,c(2, 1)
indicates columns then rows.- stop
An
integer
giving the stopping rule (i.e. maximum number of iterations) to avoid infinite loop.
Value
A RankPermutationOrder object.
Details
This procedure iteratively rearrange rows and/or columns according to their weighted rank in the data matrix until convergence.
Note that this procedure could enter into an infinite loop. If no convergence is reached before the maximum number of iterations, it stops with a warning.
References
Desachy, B. (2004). Le sériographe EPPM: un outil informatisé de sériation graphique pour tableaux de comptages. Revue archéologique de Picardie, 3(1), 39-56. doi:10.3406/pica.2004.2396 .
Dunnell, R. C. (1970). Seriation Method and Its Evaluation. American Antiquity, 35(03), 305-319. doi:10.2307/278341 .
Ihm, P. (2005). A Contribution to the History of Seriation in Archaeology. In C. Weihs & W. Gaul (Eds.), Classification: The Ubiquitous Challenge. Berlin Heidelberg: Springer, p. 307-316. doi:10.1007/3-540-28084-7_34 .
See also
Other seriation methods:
as_seriation()
,
assess()
,
order()
,
permute()
,
refine()
,
seriate_average()
Examples
## Replicates Desachy 2004 results
data("compiegne", package = "folio")
## Get seriation order for columns on EPPM using the reciprocal averaging method
## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H
(indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2))
#> Permutation order for matrix seriation:
#> * Row order: 1 2 3 4 5...
#> * Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8...
## Get permutation order
order_rows(indices)
#> [1] 1 2 3 4 5
order_columns(indices)
#> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8
## Permute columns
(new <- permute(compiegne, indices))
#> N A C K P L B E I M D G O J F H
#> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80
#> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400
#> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680
#> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840
#> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700