Correspondence Analysis-Based Seriation
Source:R/AllGenerics.R
, R/seriation_average.R
seriate_average.Rd
Correspondence Analysis-Based Seriation
Arguments
- object
A \(m \times p\)
numeric
matrix
ordata.frame
of count data (absolute frequencies giving the number of individuals for each category, i.e. a contingency table). Adata.frame
will be coerced to anumeric
matrix
viadata.matrix()
.- ...
Currently not used.
- margin
A
numeric
vector giving the subscripts which the rearrangement will be applied over:1
indicates rows,2
indicates columns,c(1, 2)
indicates rows then columns,c(2, 1)
indicates columns then rows.- axes
An
integer
vector giving the subscripts of the CA axes to be used.- sup_row
A
vector
specifying the indices of the supplementary rows (seedimensio::ca()
).- sup_col
A
vector
specifying the indices of the supplementary columns (seedimensio::ca()
).
Value
An AveragePermutationOrder
object.
Details
Correspondence analysis (CA) is an effective method for the seriation of archaeological assemblages. The order of the rows and columns is given by the coordinates along one dimension of the CA space, assumed to account for temporal variation. The direction of temporal change within the correspondence analysis space is arbitrary: additional information is needed to determine the actual order in time.
References
Ihm, P. (2005). A Contribution to the History of Seriation in Archaeology. In C. Weihs & W. Gaul (Eds.), Classification: The Ubiquitous Challenge. Berlin Heidelberg: Springer, p. 307-316. doi:10.1007/3-540-28084-7_34 .
See also
Other seriation methods:
as_seriation()
,
assess()
,
order()
,
permute()
,
refine()
,
seriate_rank()
Examples
## Replicates Desachy 2004 results
data("compiegne", package = "folio")
## Get seriation order for columns on EPPM using the reciprocal averaging method
## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H
(indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2))
#> Permutation order for matrix seriation:
#> * Row order: 1 2 3 4 5...
#> * Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8...
## Get permutation order
order_rows(indices)
#> [1] 1 2 3 4 5
order_columns(indices)
#> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8
## Permute columns
(new <- permute(compiegne, indices))
#> N A C K P L B E I M D G O J F H
#> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80
#> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400
#> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680
#> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840
#> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700