Simulates MCD from a multinomial distribution.
Usage
# S4 method for class 'MeanDate'
simulate(object, nsim = 1000, seed = NULL, ...)
Arguments
- object
- nsim
A non-negative
integer
specifying the number of simulations.- seed
An object specifying if and how the random number generator should be initialized (see
stats::simulate()
).- ...
Currently not used.
Value
A SimulationMeanDate
object.
Details
For each assemblage, a large number of new bootstrap replicates is created, with the same sample size, by resampling the original assemblage with replacement. MCDs are calculated for each replicates.
See also
Other resampling methods:
bootstrap.EventDate
,
bootstrap.MeanDate
,
jackknife.EventDate
,
jackknife.MeanDate
Examples
## Data from Peeples and Schachner 2012
data("zuni", package = "folio")
## Set the start and end dates for each ceramic type
dates <- list(
LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050),
GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150),
RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350),
PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225),
SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300),
PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450)
)
## Calculate date midpoints
mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1))
## Calculate MCD
(mc_dates <- mcd(zuni[100:125, ], dates = mid))
#> 26 x 18 x 1 time series observed between 757.291 CE and 1259.38 CE
## Get MCD in years CE
time(mc_dates, calendar = CE())
#> [1] 757.2912 796.6659 797.4991 952.5855 996.2952 1016.0738 1027.5011
#> [8] 1059.5249 1073.6597 1075.5213 1089.5820 1092.8564 1100.0000 1127.7799
#> [15] 1137.1101 1200.0017 1204.3868 1207.1436 1219.4454 1227.3745 1235.4176
#> [22] 1237.5000 1238.8896 1253.1241 1256.2502 1259.3757
## Plot
plot(mc_dates)
## Bootstrap resampling
boot <- bootstrap(mc_dates, n = 30)
head(boot)
#> original mean bias error
#> LZ0789 757.2917 769.8849 12.59326 70.42264
#> LZ0783 796.6667 839.3107 42.64399 122.87193
#> LZ0782 797.5000 NaN NaN NA
#> LZ0778 952.5862 984.3342 31.74801 120.11099
#> LZ0777 996.2963 1020.3336 24.03729 81.34437
#> LZ0776 1016.0714 1039.5134 23.44199 65.77519
## Jackknife resampling
jack <- jackknife(mc_dates)
head(jack)
#> original mean bias error
#> LZ0789 757.2917 768.2870 186.921296 207.5535
#> LZ0783 796.6667 806.9974 175.621693 228.0861
#> LZ0782 797.5000 804.1715 113.415558 169.0563
#> LZ0778 952.5862 954.5205 32.882529 138.6064
#> LZ0777 996.2963 996.6640 6.251785 111.0144
#> LZ0776 1016.0714 1017.1652 18.594831 72.6602
## Simulation
sim <- simulate(mc_dates, nsim = 30)
plot(sim, interval = "range", pch = 16)