Estimates the Mean Ceramic Date of an assemblage.
Arguments
- object
A \(m \times p\)
numeric
matrix
ordata.frame
of count data (absolute frequencies giving the number of individuals for each category, i.e. a contingency table). Adata.frame
will be coerced to anumeric
matrix
viadata.matrix()
.- dates
A length-\(p\)
numeric
vector of dates expressed in years.- ...
Currently not used.
- calendar
An
aion::TimeScale
object specifying the calendar ofdates
(seecalendar()
). Defaults to Gregorian Common Era.
Value
A MeanDate
object.
Details
The Mean Ceramic Date (MCD) is a point estimate of the occupation of an archaeological site (South 1977). The MCD is estimated as the weighted mean of the date midpoints of the ceramic types (based on absolute dates or the known production interval) found in a given assemblage. The weights are the relative frequencies of the respective types in the assemblage.
A bootstrapping procedure is used to estimate the confidence interval of a given MCD. For each assemblage, a large number of new bootstrap replicates is created, with the same sample size, by resampling the original assemblage with replacement. MCDs are calculated for each replicates and upper and lower boundaries of the confidence interval associated with each MCD are then returned.
References
South, S. A. (1977). Method and Theory in Historical Archaeology. New York: Academic Press.
See also
plot(), bootstrap(), jackknife(), simulate()
Other dating methods:
event()
,
predict_event()
Examples
## Data from Peeples and Schachner 2012
data("zuni", package = "folio")
## Set the start and end dates for each ceramic type
dates <- list(
LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050),
GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150),
RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350),
PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225),
SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300),
PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450)
)
## Calculate date midpoints
mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1))
## Calculate MCD
(mc_dates <- mcd(zuni[100:125, ], dates = mid))
#> 26 x 18 x 1 time series observed between 276230.3 and 459613.1 r.d.
## Get MCD in years CE
time(mc_dates, calendar = CE())
#> [1] 757.2912 796.6659 797.4991 952.5855 996.2952 1016.0738 1027.5011
#> [8] 1059.5249 1073.6597 1075.5213 1089.5820 1092.8564 1100.0000 1127.7799
#> [15] 1137.1101 1200.0017 1204.3868 1207.1436 1219.4454 1227.3745 1235.4176
#> [22] 1237.5000 1238.8896 1253.1241 1256.2502 1259.3757
## Plot
plot(mc_dates)
## Bootstrap resampling
boot <- bootstrap(mc_dates, n = 30)
head(boot)
#> original mean bias error
#> LZ0789 757.2917 NaN NaN NA
#> LZ0783 796.6667 871.5393 74.872615 131.18539
#> LZ0782 797.5000 853.3771 55.877123 90.10455
#> LZ0778 952.5862 982.2641 29.677845 97.47512
#> LZ0777 996.2963 1001.4051 5.108790 93.74198
#> LZ0776 1016.0714 1010.6228 -5.448629 86.83343
## Jackknife resampling
jack <- jackknife(mc_dates)
head(jack)
#> original mean bias error
#> LZ0789 757.2917 768.2870 186.921296 207.5535
#> LZ0783 796.6667 806.9974 175.621693 228.0861
#> LZ0782 797.5000 804.1715 113.415558 169.0563
#> LZ0778 952.5862 954.5205 32.882529 138.6064
#> LZ0777 996.2963 996.6640 6.251785 111.0144
#> LZ0776 1016.0714 1017.1652 18.594831 72.6602
## Simulation
sim <- simulate(mc_dates, nsim = 30)
plot(sim, interval = "range", pch = 16)