Computes a principal components analysis based on the singular value decomposition.
Usage
pca(object, ...)
# S4 method for class 'data.frame'
pca(
object,
center = TRUE,
scale = TRUE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
sup_quali = NULL,
weight_row = NULL,
weight_col = NULL,
autodetect = FALSE
)
# S4 method for class 'matrix'
pca(
object,
center = TRUE,
scale = TRUE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
weight_row = NULL,
weight_col = NULL
)
Arguments
- object
A \(m \times p\)
numeric
matrix
or adata.frame
.- ...
Currently not used.
- center
A
logical
scalar: should the variables be shifted to be zero centered?- scale
A
logical
scalar: should the variables be scaled to unit variance?- rank
An
integer
value specifying the maximal number of components to be kept in the results. IfNULL
(the default), \(p - 1\) components will be returned.- sup_row
A
vector
specifying the indices of the supplementary rows.- sup_col
A
vector
specifying the indices of the supplementary columns.- sup_quali
A
vector
specifying the indices of the supplementary qualitative columns.- weight_row
A
numeric
vector specifying the active row (individual) weights. IfNULL
(the default), uniform weights are used. Row weights are internally normalized to sum 1- weight_col
A
numeric
vector specifying the active column (variable) weights. IfNULL
(the default), uniform weights (1) are used.- autodetect
A
logical
scalar: should non-numeric variables be automatically removed (exceptsup_quali
)?
Value
A PCA
object.
References
Lebart, L., Piron, M. and Morineau, A. Statistique exploratoire multidimensionnelle: visualisation et inférence en fouille de données. Paris: Dunod, 2006.
Examples
## Load data
data("iris")
## Compute principal components analysis
X <- pca(iris, sup_quali = "Species")
## Get eigenvalues
get_eigenvalues(X)
#> eigenvalues variance cumulative
#> F1 2.9184978 73.342264 73.34226
#> F2 0.9140305 22.969715 96.31198
#> F3 0.1467569 3.688021 100.00000
## Get individual cos2
head(get_cos2(X, margin = 1))
#> F1 F2 F3 .sup
#> 1 0.9539975 0.04286032 0.0030335249 FALSE
#> 2 0.8927725 0.09369248 0.0113475382 FALSE
#> 3 0.9790410 0.02047578 0.0003422122 FALSE
#> 4 0.9346682 0.06308947 0.0014732682 FALSE
#> 5 0.9315095 0.06823959 0.0000403979 FALSE
#> 6 0.6600989 0.33978301 0.0001114335 FALSE
## Get variable contributions
get_contributions(X, margin = 2)
#> F1 F2 F3
#> Sepal.Length 27.150969 14.24440565 51.777574
#> Sepal.Width 7.254804 85.24748749 5.972245
#> Petal.Length 33.687936 0.05998389 2.019990
#> Petal.Width 31.906291 0.44812296 40.230191
## Get correlations between variables and dimensions
get_correlations(X)
#> F1 F2 F3 .sup
#> Sepal.Length 0.8901688 0.36082989 -0.27565767 FALSE
#> Sepal.Width -0.4601427 0.88271627 0.09361987 FALSE
#> Petal.Length 0.9915552 0.02341519 0.05444699 FALSE
#> Petal.Width 0.9649790 0.06399985 0.24298265 FALSE