Predict the projection of new individuals/rows or variables/columns.
Usage
# S4 method for class 'CA'
predict(object, newdata, margin = 1)
# S4 method for class 'MCA'
predict(object, newdata, margin = 1)
# S4 method for class 'PCA'
predict(object, newdata, margin = 1)
Value
A data.frame
of coordinates.
Examples
## Create a matrix
A <- matrix(data = sample(1:10, 100, TRUE), nrow = 10, ncol = 10)
## Compute correspondence analysis
X <- ca(A, sup_row = 8:10, sup_col = 7:10)
## Predict new row coordinates
Y <- matrix(data = sample(1:10, 120, TRUE), nrow = 20, ncol = 6)
predict(X, Y, margin = 1)
#> F1 F2 F3 F4 F5
#> 1 -0.128729299 -0.10818032 -0.28141357 0.22837513 0.10092295
#> 2 0.008121081 0.17028784 0.10379300 0.02906333 -0.06312539
#> 3 -0.160557061 0.05341086 0.14594044 -0.19515079 -0.15087036
#> 4 -0.057715821 0.07074400 -0.12705850 0.42742953 -0.04397607
#> 5 -0.117628254 0.24528565 -0.46157158 0.12254404 -0.02080062
#> 6 0.178112797 -0.02005509 0.37060924 -0.24227422 -0.12743457
#> 7 0.334988780 0.24796911 -0.05571254 -0.10966582 -0.17614132
#> 8 -0.250268416 -0.10093360 0.09066519 0.04076770 0.47087426
#> 9 0.259326889 0.48049118 -0.01603082 0.04921786 -0.03381440
#> 10 0.088317816 0.43658750 0.27114687 0.29903275 -0.30408585
#> 11 -0.369276777 0.05421755 -0.07186879 -0.01892826 -0.07841824
#> 12 0.312227631 0.39196624 -0.01959556 0.22946974 0.37427428
#> 13 0.039287192 0.07615105 -0.30140007 -0.31568099 -0.02506324
#> 14 0.184665640 -0.09939800 -0.04084344 -0.10024053 0.12179249
#> 15 0.206202178 0.56466303 -0.05641571 0.54282300 -0.33286021
#> 16 -0.028086985 0.16621222 -0.18655128 0.53860759 -0.08052961
#> 17 -0.140471355 -0.18951745 0.32475345 0.06906093 -0.09491990
#> 18 0.226491468 0.23547227 0.22619649 -0.05558173 0.31818430
#> 19 0.019360997 -0.21569121 -0.03774573 -0.20344281 0.08544785
#> 20 0.051210701 -0.36342220 0.19193448 -0.07545041 -0.08750094
## Predict new column coordinates
Z <- matrix(data = sample(1:10, 140, TRUE), nrow = 7, ncol = 20)
predict(X, Z, margin = 2)
#> F1 F2 F3 F4 F5
#> 1 -0.007778935 -0.06590696 -0.24994122 -0.17246430 -0.103566273
#> 2 -0.014574674 -0.06888883 -0.32532760 -0.10531564 0.097639337
#> 3 -0.331380197 -0.20832587 -0.18515268 -0.02155093 0.134644940
#> 4 -0.402912301 -0.08755611 0.03481876 0.13802858 0.056973646
#> 5 0.060876109 -0.07668870 0.10867197 -0.01803285 -0.250749950
#> 6 0.311203953 0.07489021 -0.54747603 0.05344443 -0.049140586
#> 7 0.093209429 0.29260414 0.06890015 -0.30250813 -0.146335238
#> 8 0.555794516 0.14877195 -0.42435015 -0.16769966 0.138918229
#> 9 0.249983310 -0.23792363 -0.43321719 0.04345054 -0.142323994
#> 10 0.022457354 -0.04565814 -0.26252092 -0.10526162 0.121526468
#> 11 -0.315653969 0.26146294 0.42844705 -0.38889845 0.074593041
#> 12 -0.310194545 0.06815641 -0.25939921 -0.14271163 -0.008288752
#> 13 0.027045722 0.05953004 -0.30708687 -0.17880406 -0.367429060
#> 14 0.025996136 -0.41738533 -0.53954969 -0.36465292 0.413890909
#> 15 0.189363737 -0.27457772 -0.13617487 -0.29518543 0.616320669
#> 16 -0.196653053 0.12268971 -0.37407331 -0.03630774 -0.264267802
#> 17 0.091275762 0.44158341 0.04081940 -0.27642974 -0.183977410
#> 18 0.084936907 0.12898072 -0.30835094 0.38116538 -0.123561968
#> 19 0.363482409 -0.25521327 0.21745105 -0.27262856 0.080429002
#> 20 0.069667057 0.08142962 0.01414399 0.05244094 0.114946580