
Principal Coordinates Analysis
pcoa.Rd
Computes classical (metric) multidimensional scaling.
Arguments
- object
- ...
Currently not used.
- rank
An
integer
value specifying the maximal number dimension of the space which the data are to be represented in.
Value
A PCOA
object.
References
Gower, J. C. (1966). Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. Biometrika, 53(3‑4): 325-338. doi:10.1093/biomet/53.3-4.325 .
Examples
## Load data
data("iris")
## Compute euclidean distances
d <- dist(iris[, 1:4], method = "euclidean")
## Compute principal coordinates analysis
X <- pcoa(d)
## Screeplot
screeplot(X)
## Plot results
plot(X, extra_quali = iris$Species)
## Add convex hulls
plot(
x = X,
extra_quali = iris$Species,
hull = TRUE
)
## Add tolerance ellipses
plot(
x = X,
extra_quali = iris$Species,
ellipse = list(type = "tolerance", level = 0.95)
)