Plot Envelopes
Usage
viz_hull(x, ...)
viz_confidence(x, ...)
viz_tolerance(x, ...)
# S4 method for class 'MultivariateAnalysis'
viz_tolerance(
x,
...,
margin = 1,
axes = c(1, 2),
group = NULL,
level = 0.95,
color = NULL,
fill = FALSE,
symbol = FALSE
)
# S4 method for class 'BootstrapCA'
viz_tolerance(
x,
...,
margin = 1,
axes = c(1, 2),
level = 0.95,
color = FALSE,
fill = FALSE,
symbol = FALSE
)
# S4 method for class 'MultivariateAnalysis'
viz_confidence(
x,
...,
margin = 1,
axes = c(1, 2),
group = NULL,
level = 0.95,
color = NULL,
fill = FALSE,
symbol = FALSE
)
# S4 method for class 'BootstrapCA'
viz_confidence(
x,
...,
margin = 1,
axes = c(1, 2),
level = 0.95,
color = FALSE,
fill = FALSE,
symbol = FALSE
)
# S4 method for class 'MultivariateAnalysis'
viz_hull(
x,
...,
margin = 1,
axes = c(1, 2),
group = NULL,
color = NULL,
fill = FALSE,
symbol = FALSE
)
# S4 method for class 'BootstrapCA'
viz_hull(
x,
...,
margin = 1,
axes = c(1, 2),
color = FALSE,
fill = FALSE,
symbol = FALSE
)
Arguments
- x
An object from which to wrap observations (a
CA
,MCA
orPCA
object).- ...
Further graphical parameters to be passed to
graphics::polygon()
.- margin
A length-one
numeric
vector giving the subscript which the data will be returned:1
indicates individuals/rows (the default),2
indicates variables/columns.- axes
A length-two
numeric
vector giving the dimensions for which to compute results.- group
A vector specifying the group an observation belongs to.
- level
A
numeric
vector specifying the confidence/tolerance level.- color
The colors for borders (will be mapped to
group
). Ignored if set toFALSE
.- fill
The background colors (will be mapped to
group
). Ignored if set toFALSE
.- symbol
A vector of symbols (will be mapped to
group
). Ignored if set toFALSE
.
Value
viz_*()
is called for its side-effects: it results in a graphic being
displayed. Invisibly returns x
.
See also
Other plot methods:
biplot()
,
plot()
,
screeplot()
,
viz_contributions()
,
viz_individuals()
,
viz_variables()
,
wrap
Examples
## Load data
data("iris")
## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_quali = "Species")
## Plot with convex hulls
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_hull(X, group = iris$Species, color = col)
## Plot with tolerance ellipses
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_tolerance(X, group = iris$Species, color = col)