Skip to contents

Plot Envelopes

Usage

viz_hull(x, ...)

viz_confidence(x, ...)

viz_tolerance(x, ...)

# S4 method for class 'MultivariateAnalysis'
viz_tolerance(
  x,
  ...,
  margin = 1,
  axes = c(1, 2),
  group = NULL,
  level = 0.95,
  color = NULL,
  fill = FALSE,
  symbol = FALSE
)

# S4 method for class 'BootstrapCA'
viz_tolerance(
  x,
  ...,
  margin = 1,
  axes = c(1, 2),
  level = 0.95,
  color = FALSE,
  fill = FALSE,
  symbol = FALSE
)

# S4 method for class 'MultivariateAnalysis'
viz_confidence(
  x,
  ...,
  margin = 1,
  axes = c(1, 2),
  group = NULL,
  level = 0.95,
  color = NULL,
  fill = FALSE,
  symbol = FALSE
)

# S4 method for class 'BootstrapCA'
viz_confidence(
  x,
  ...,
  margin = 1,
  axes = c(1, 2),
  level = 0.95,
  color = FALSE,
  fill = FALSE,
  symbol = FALSE
)

# S4 method for class 'MultivariateAnalysis'
viz_hull(
  x,
  ...,
  margin = 1,
  axes = c(1, 2),
  group = NULL,
  color = NULL,
  fill = FALSE,
  symbol = FALSE
)

# S4 method for class 'BootstrapCA'
viz_hull(
  x,
  ...,
  margin = 1,
  axes = c(1, 2),
  color = FALSE,
  fill = FALSE,
  symbol = FALSE
)

Arguments

x

An object from which to wrap observations (a CA, MCA or PCA object).

...

Further graphical parameters to be passed to graphics::polygon().

margin

A length-one numeric vector giving the subscript which the data will be returned: 1 indicates individuals/rows (the default), 2 indicates variables/columns.

axes

A length-two numeric vector giving the dimensions for which to compute results.

group

A vector specifying the group an observation belongs to.

level

A numeric vector specifying the confidence/tolerance level.

color

The colors for borders (will be mapped to group). Ignored if set to FALSE. If NULL, the default color scheme will be used.

fill

The background colors (will be mapped to group). Ignored if set to FALSE.

symbol

A vector of symbols (will be mapped to group). Ignored if set to FALSE.

Value

viz_*()is called for its side-effects: it results in a graphic being displayed. Invisibly returns x.

See also

Author

N. Frerebeau

Examples

## Load data
data("iris")

## Compute principal components analysis
X <- pca(iris, scale = TRUE, sup_quali = "Species")

## Plot with convex hulls
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_hull(X, group = iris$Species, color = col)


## Plot with tolerance ellipses
col <- c("#004488", "#DDAA33", "#BB5566")
viz_rows(X, extra_quali = iris$Species, color = col)
viz_tolerance(X, group = iris$Species, color = col)