Computes ALR transformation.
Usage
transform_alr(object, ...)
# S4 method for class 'CompositionMatrix'
transform_alr(object, j = ncol(object), weights = FALSE)
# S4 method for class 'GroupedComposition'
transform_alr(object, j = ncol(object), weights = FALSE)
# S4 method for class 'CLR'
transform_alr(object, j = ncol(object))
# S4 method for class 'GroupedCLR'
transform_alr(object, j = ncol(object), weights = FALSE)
Arguments
- object
A
CompositionMatrix
object.- ...
Currently not used.
- j
An
integer
giving the index of the rationing part (denominator).- weights
A
logical
scalar: should varying weights (column means) be computed? IfFALSE
(the default), equally-weighted parts are used. Alternatively, a positivenumeric
vector of weights can be specified (will be rescaled to sum to \(1\)). Weights will be used internally by other methods (e.g.variance()
).
Value
An ALR
object.
References
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. London: Chapman and Hall.
Greenacre, M. J. (2019). Compositional Data Analysis in Practice. Boca Raton: CRC Press.
Greenacre, M. J. (2021). Compositional Data Analysis. Annual Review of Statistics and Its Application, 8(1): 271-299. doi:10.1146/annurev-statistics-042720-124436 .
See also
Other log-ratio transformations:
transform_clr()
,
transform_ilr()
,
transform_inverse()
,
transform_lr()
,
transform_plr()
Examples
## Data from Aitchison 1986
data("hongite")
## Coerce to compositional data
coda <- as_composition(hongite)
## Additive log-ratio
alr <- transform_alr(coda)
## Inverse transformation
inv_alr <- transform_inverse(alr)
all.equal(coda, inv_alr)
#> [1] TRUE