Diversity Plot
Usage
# S4 method for class 'DiversityIndex,missing'
plot(
x,
log = "x",
col.mean = "#DDAA33",
col.interval = "#004488",
lty.mean = "solid",
lty.interval = "dashed",
lwd.mean = 1,
lwd.interval = 1,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL,
...
)
Arguments
- x
A DiversityIndex object to be plotted.
- log
A
character
string indicating which axes should be in log scale. Defaults tox
.- col.mean, col.interval
A
character
string specifying the color of the lines.- lty.mean, lty.interval
A
character
string ornumeric
value specifying the line types.- lwd.mean, lwd.interval
A non-negative
numeric
value specifying the line widths.- xlab, ylab
A
character
vector giving the x and y axis labels.- main
A
character
string giving a main title for the plot.- sub
A
character
string giving a subtitle for the plot.- ann
A
logical
scalar: should the default annotation (title and x, y and z axis labels) appear on the plot?- axes
A
logical
scalar: should axes be drawn on the plot?- frame.plot
A
logical
scalar: should a box be drawn around the plot?- panel.first
An an
expression
to be evaluated after the plot axes are set up but before any plotting takes place. This can be useful for drawing background grids.- panel.last
An
expression
to be evaluated after plotting has taken place but before the axes, title and box are added.- ...
Further graphical parameters to be passed to
graphics::points()
, particularly,cex
,col
andpch
.
Value
plot()
is called for its side-effects: it results in a graphic being
displayed (invisibly returns x
).
See also
Other diversity measures:
heterogeneity()
,
occurrence()
,
plot_rarefaction
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
,
turnover()
Examples
# \donttest{
## Data from Conkey 1980, Kintigh 1989
data("cantabria")
## Assemblage diversity size comparison
## Warning: this may take a few seconds!
h <- heterogeneity(cantabria, method = "shannon")
h_sim <- simulate(h)
plot(h_sim)
r <- richness(cantabria, method = "observed")
r_sim <- simulate(r)
plot(r_sim)
# }