Returns the degree of turnover in taxa composition along a gradient or transect.
Usage
turnover(object, ...)
# S4 method for class 'matrix'
turnover(
object,
...,
method = c("whittaker", "cody", "routledge1", "routledge2", "routledge3", "wilson")
)
# S4 method for class 'data.frame'
turnover(
object,
...,
method = c("whittaker", "cody", "routledge1", "routledge2", "routledge3", "wilson")
)
Arguments
- object
A \(m \times p\)
numeric
matrix
ordata.frame
of count data or incidence data. Adata.frame
will be coerced to anumeric
matrix
viadata.matrix()
.- ...
Further arguments to be passed to internal methods.
- method
A
character
string specifying the method to be used (see details). Any unambiguous substring can be given.
Value
A numeric
vector.
Details
The following methods can be used to ascertain the degree of turnover in taxa composition along a gradient (\(\beta\)-diversity) on qualitative (presence/absence) data:
cody
routledge1
routledge2
routledge3
Routledge third measure (exponential form of the second measure).
whittaker
wilson
This assumes that the order of the matrix rows (from \(1\) to \(n\)) follows the progression along the gradient/transect.
See also
index_cody()
, index_routledge1()
, index_routledge2()
,
index_routledge3()
, index_whittaker()
, index_wilson()
Other diversity measures:
heterogeneity()
,
occurrence()
,
plot_diversity
,
plot_rarefaction
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
similarity()
,
simulate()
Examples
## Data from Magurran 1988, p. 162
data("woodland")
## Whittaker's measure
turnover(woodland, "whittaker") # 1
#> [1] 1
## Cody's measure
turnover(woodland, "cody") # 3
#> [1] 1
## Routledge's measures
turnover(woodland, "routledge1") # 0.29
#> [1] 1
turnover(woodland, "routledge2") # 0.56
#> [1] 1
turnover(woodland, "routledge3") # 1.75
#> [1] 1
## Wilson and Shmida's measure
turnover(woodland, "wilson") # 1
#> [1] 1