Similarity
Arguments
- object
A \(m \times p\)
numeric
matrix
ordata.frame
of count data (absolute frequencies giving the number of individuals for each category, i.e. a contingency table). Adata.frame
will be coerced to anumeric
matrix
viadata.matrix()
.- ...
Currently not used.
- method
A
character
string specifying the method to be used (see details). Any unambiguous substring can be given.
Value
A stats::dist object.
Details
\(\beta\)-diversity can be measured by addressing similarity between pairs of samples/cases (Brainerd-Robinson, Jaccard, Morisita-Horn and Sorenson indices).
Jaccard, Morisita-Horn and Sorenson indices provide a scale of similarity from \(0\)-\(1\) where \(1\) is perfect similarity and \(0\) is no similarity. The Brainerd-Robinson index is scaled between \(0\) and \(200\).
brainerd
bray
jaccard
morisita
sorenson
References
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. doi:10.1007/978-94-015-7358-0 .
See also
index_binomial()
, index_brainerd()
, index_bray()
,
index_jaccard()
, index_morisita()
, index_sorenson()
Other diversity measures:
heterogeneity()
,
occurrence()
,
plot_diversity
,
plot_rarefaction
,
profiles()
,
rarefaction()
,
richness()
,
she()
,
simulate()
,
turnover()
Examples
## Data from Huntley 2004, 2008
data("pueblo")
## Brainerd-Robinson measure
(C <- similarity(pueblo, "brainerd"))
#> Atsinna Cienega Mirabal PdMuertos Hesh LowPesc BoxS
#> Cienega 164.36782
#> Mirabal 152.38095 138.09524
#> PdMuertos 179.31034 150.57471 152.38095
#> Hesh 82.75862 55.55556 66.66667 103.44828
#> LowPesc 89.21023 62.00717 73.11828 109.89989 193.54839
#> BoxS 82.75862 55.55556 114.28571 102.17114 103.70370 103.70370
#> Ojo Bon 27.58621 22.22222 19.04762 20.68966 26.66667 25.80645 22.22222
#> S170 27.58621 22.22222 19.04762 20.68966 26.66667 25.80645 22.22222
#> Ojo Bon
#> Cienega
#> Mirabal
#> PdMuertos
#> Hesh
#> LowPesc
#> BoxS
#> Ojo Bon
#> S170 190.53030
plot_spot(C)
## Data from Magurran 1988, p. 166
data("aves")
## Jaccard measure (presence/absence data)
similarity(aves, "jaccard") # 0.46
#> unmanaged
#> managed 0.4615385
# Bray and Curtis modified version of the Sorenson index (count data)
(sim <- similarity(aves, "bray")) # 0.44
#> unmanaged
#> managed 0.4442754
# Bray and Curtis dissimilarity
1 - sim
#> unmanaged
#> managed 0.5557246